建材秒知道
登录
建材号 > 链条 > 正文

高一物理力学 光速求救

勤奋的小天鹅
糟糕的酸奶
2023-03-20 23:26:37

高一物理力学 光速求救

最佳答案
鳗鱼黄蜂
迷路的西牛
2025-04-17 14:56:48

‘重为G的匀质链条挂在等高两钩上,并与水平方向成θ角’表示链条端点所受的力F的方向与水平方向成θ角(过挂钩的切线方向),F的竖直分量与链条的一半重力平衡;即 2Fsinθ=G,故链条两端受的力为 F=G/2sinθ. 链条最低处的张力即为F的水平分量 Fcosθ=G/2sinθ*cosθ=Gcotθ/2

最新回答
专一的洋葱
潇洒的芹菜
2025-04-17 14:56:48

“失重现象”是高中《物理》的内容。下面介绍几个自制的演示失重现象的小实验,以飨读者。

链条失重现象

自制一木架,在木架上端悬挂一根细链条,使链条的一端A固定在木架横梁上,另一端B用细线系在链条A端的一个环上(为使现象明显可使链条长一些,在B端挂一个钩码)。此装置放在带有托盘的台秤上,装置静止时观察台秤指针所指的示数,点燃火柴烧断系住链条B端的细线,这时引导学生观察台秤示数的变化,可观察到台秤示数变小。这说明链条下落时发生了失重现象。但当这一半链条下落到被上一半链条拉住静止时,台秤又恢复到原来的示数。

压力消失现象

在一个平底吊盘上放一个重物m,把一张薄纸条A的一端压在重物m和吊盘之间,纸条尽量窄且不很结实。当抽动一端时,纸条轻易地被拉断。实验时,一只手把纸条的另一端固定,另一只手提着盘的吊线B。先用手提着盘和重物慢慢下降,则纸条先被拉紧,接着就断裂了。这是因为纸条被重物压着的一端存在静摩擦力的作用。第二次换一张同样的纸条,把纸条的一端压在重物和盘之间,另一端固定,但是提吊线B的手突然放开,使盘和重物同时自由下落,可以看到纸条不但没有被拉断而且完好如初。这是因为自由下落过程中重物完全失重,不受盘的支持力,其反作用力——重物对盘的压力也就消失了,使静摩擦力不复存在。因此,可以从容地拉出纸条。

喷泉失射现象

取一只旧塑料瓶(如可乐瓶),在瓶的一端侧壁上钻几个小孔,用手指堵住小孔,向瓶中装满水(向水中滴几滴红墨水,便于看得更清楚),松开手指,则水就会喷射出来。这是水的重量产生的压强对瓶壁的作用。如果松开了拿瓶的手,让瓶自由下落,这时可以看到水立即停止喷出。这是因为正在自由下落的水处于完全失重状态,水层之间不再存在压力,故水不会从孔中流出。

斜面上下滑小车失重现象

用薄三合板自制一个斜面(稍长些),把一小车通过细线固定在斜面的上端。此装置放在带有托盘的台秤上(固定好),待装置静止时观察台秤指针所指的示数。点燃火柴烧断系住小车的细线,小车将沿斜面加速下滑,这时可观察到台秤示数变小。这说明小车加速下滑过程中发生了失重现象。知识点加速度

加速度是速度变化量与发生这一变化所用时间的比值,是描述物体速度改变快慢的物理量。例如,一个匀加速运动的质点,刚开始的速度是1米每秒,经过2秒钟以后,其速度变为3米每秒,那么这个质点的加速度的计算方法就是:用末速度减去初速度除以时间(2秒钟),就是1米每二次方秒。表示的意思就是,这个质点每经过1秒,其速度就增加1米每秒。但需要注意的是,加速度是一个矢量,就是说,这个量不仅表示质点加速度的大小,还表示加速度的方向。

懦弱的缘分
健壮的滑板
2025-04-17 14:56:48
简单机械

凡能够改变力的大小和方向的装置,统称“机械”。利用机械既可减轻体力劳动,又能提高工作效率。机械的种类繁多,而且比较复杂。根据伽利略的提示,人们曾尝试将一切机械都分解为几种简单机械,实际上这是很困难的,通常是把以下几种机械作为基础来研究。例如,杠杆、滑轮、轮轴、齿轮、斜面、螺旋、劈等。前四种简单机械是杠杆的变形,所以称为“杠杆类简单机械”。后三种是斜面的变形,故称为“斜面类简单机械”。不论使用哪一类简单机械都必须遵循机械的一般规律——功的原理。

杠杆

用刚性材料制成的形状是直的或弯曲的杆,在外力作用下能绕固定点或一定的轴线转动的一种简单机械。其上有支点(用O表示),动力(F)作用点,阻力(W)作用点,杠杆的固定转轴就是通常所说的“支点”,从转轴到动力作用线的垂直距离叫“动力臂”,从转轴到阻力作用线的垂直距离叫“阻力臂”。上述就是通常所讲的三点两臂。由于杠杆上三点的位置不同,即产生不同的受力效果。

杠杆原理

亦称“杠杆平衡条件[1]”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为 F1· L1=F2·L2 简单机械

式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。

动力

任何机械,不论是简单的还是复杂的,在工作时,总要受到两种力的作用:一种是推动机械的力叫作“动力”动力是使杠杆转动的力。另一种是阻碍机械运动的力叫作“阻力”阻力是阻碍杠杆转动的力。动力可以是人力,也可以是畜力、风力、电力、水力、蒸汽压力等,阻力除了我们要克服的有用阻力之外,还有一些是不可避免的无用阻力。

作用线

通过力的作用点沿力的方向所引的直线,叫作“力的作用线”。

动力臂

从支点到力的作用线的垂直距离叫“力臂”。从支点到动力的作用线的垂直距离L1叫作“动力臂”;从支点到阻力的作用线的垂直距离L2叫作“阻力臂”。如果把从动力点到支点的棒长距离作为动力臂,或把从阻力点到支点的棒长距离作为阻力臂,这种认识是错误的。这是因为对动力臂和阻力臂的概念认识不清所致。

阻力臂

见动力臂条。

转动轴

转动是常见的一种运动。当物体转动时,它的各点都做圆周运动,这些圆周的中心在同一直线上,这条直线叫做“转动轴”。门、窗、砂轮、电动机的转子等都有固定转轴,只能发生转动,而不能平动。几个力作用在物体上,它们对物体的转动作用决定于它们的力矩的代数和。若力矩的代数和等于零,物体将用原来的角速度做匀速转动或保持静止。

三类杠杆

对杠杆的分类一般是两种方法。第一种是以支点、阻力点和动力点所处的位置来分的;另一种是按省力或费力来区分的。无论怎样来划分,总离不开省力、费力、不省力也不费力这几种情况。 简单机械

机械利益

表示机械省力程度的物理量。机械虽然绝对不能省功,但可以省力。使机械作功的力称为“动力”(F),阻碍机械作功的力称为“阻力”(P)。使用机械的目的,在于使用很小的动力而与阻力平衡。所谓机械利益(A),就是机械的有用阻力(P)跟动力(F) 小于1。 机械利益>1时,省力费时,凡省力的机械,其机械利益必大于1。例如,独轮车、钳子、起子、省力的杠杆等都是省力的机械。机械利益=1时,不省力,也不费力。例如物理天乎。机械利益<1时,费力省时,例如竹夹、火钳等。机械利益是由实际测得的有用阻力和动力的大小所决定。由于机械润滑情况的不同,在克服同样的有用阻力时,亦有所不同。机械润滑得不好,无用阻力大,需要动力也大,机械利益就小些;机械润滑得好,无用阻力小,需要的动力也小,机械利益就大些。新生产出的机器需要磨合,汽车出厂要用上一段时间,目的是使其摩擦阻力减小。但机器陈旧,机件磨损,又会增加阻力。

杠杆的应用

不同类型杠杆各具有不同的特点和用途。掌握了杠杆原理,就可根据需要有意识地选用不同类型的杠杆来使用。应明确:省力杠杆省力但要多移动距离,费力杠杆费力但省距离,等臂杠杆不省力也不省距离,又省力又省距离的杠杆是没有的。有的杠杆是否省力或省距离,不是永恒不变的。根据使用情况的不同,会由省力变为省距离。例如,用铁锹铲土,往车上装土的过程都会有所改变。铲土时支点在动力点及阻力点之间,在装土时动力点在支点与阻力点之间。为此,在使用杠杆时应注意几点: 1.解答杠杆问题时,必须根据题意画出示意图,在图上标出杠杆的支点、动力作用线和阻力作用线。同时用线段标明动力臂和阻力臂的大小,再根据杠杆平衡条件,列出方程,进行计算。 2.力臂是一个重要的概念。力臂是从支点到力的作用线的垂直距离,不要理解为力臂是从支点到力的作用点的长度。动力和阻力都是指作用在同一杠杆上的力,而不是作用在重物或其他物体上的力。 3.画杠杆示意图的方法: (1)画出杠杆:用粗直线表示直杠杆,用变曲的粗线表示曲杠杆。 (2)在杠杆转动时找出支点,并在支点旁用箭头表示杠杆转动的方向。 (3)根据转动方向判断动力、阻力的方向。动力、阻力的作用点应画在杠杆上,可用力的示意图表示。 (4)用虚线表示力的作用线的延长线和力臂。 4.杠杆的平衡条件,适用于任意一个平衡位置上,所谓杠杆的平衡是指杠杆静止不转动或匀速转动。

杆秤

它是测量物体质量的量度工具,是以提纽为转动轴,根据杠杆平衡原理制造的。杆秤主要由秤杆、秤砣、秤钩(或秤盘)等构成。如图1-23所示。G表示杆秤的重力,B点是它的重点,未挂重物时若将 A点即为杆秤的“定盘星”。在秤钩上加物W后,将秤砣从A点移到A' 力G相对应的刻度A'的位置。杆秤是我国劳动人民所发明并使用已久的测量工具,旧秤以斤,两为单位计量,目前以千克计量。

力矩

又叫“转矩”,是表示力对物体作用时,使物体发生转动或改变转动状态的物理量。力矩是矢量。力矩的大小等于力与从转轴到力的作用线的垂直距离之乘积。如果物体所受的力不在垂直于转轴O的平面内,就必须把力分解成两个分力:一个分力与转轴平行;另一个分力是在转动的平面内。只有转动平面内的分力才可能改变物体的转动状态。因此,在力矩等于力跟力臂乘积的计算中,应理解力是在它的作用点的转动平面内的分力。如这一点在力的作用线上,则力矩为零。如果若干个力同时作用在一个物体上,则合力矩是所有分力矩的代数和。一个处于平衡的物体,顺时针方向力矩的和等于逆时针方向力矩的和,在国际单位制中,力矩的单位是米·牛顿。其方向用右手螺旋法则决定。在中学阶段,因为只研究有固定转轴的物体的平衡,力矩就只有两种转向。规定物体逆时针转动的力矩为正,使物体顺时针转动的力矩为负。力矩愈大,使物体转动状态发生改变的效果就愈明显。用大小相同的力推门时,力的作用点离转轴愈远,且方向垂直于门,力臂愈大,则推门愈省力。

力偶

大小相等、方向相反,但作用线不在同一直线上的两个力叫作“力偶”。用双手攻螺纹或用手旋钥匙、水龙头时,所施加的作用常是力偶。它能使物体发生转动,或改变其转动状态。汽车驾驶员双手转动转向盘时所施加的一对力就是一个力偶。力偶的转动效果决定于力偶矩的大小。力偶矩等于其中任何一个力的大小和两力作用线之间的垂直距离(力偶臂)的乘积。如图1-24所示。如果作用力F的方向跟AB垂直,AB的长度等于d,那么这个力偶的力偶矩(M)为: M=±Fd。 式中Fd为力偶矩的大小,符号用来表示力偶的转向。规定力偶逆时针转向取“+”,反之取“-”(也可规定,力偶顺时针转向取“+”,那么力偶逆时针转向就取“-”)。应注意:力偶中力的方向不跟AB垂直时,应像力矩那样分解成垂直分量,再进行计算。力偶的转矩(即力偶矩)和所绕着转动的点无关。由于力偶的合力为零,它不能使物体产生位移,只能使物体发生转动或改变物体的转动状态。

力偶矩

简称为“力偶的力矩”,亦称“力偶的转矩”。力偶是两个相等的平行力,它们的合力矩等于平行力中的一个力与平行力之间距离(称力偶臂)的乘积,称作“力偶矩”,力偶矩与转动轴的位置无关。力偶矩是矢量,其方向和组成力偶的两个力的方向间的关系,遵从右手螺旋法则。对于有固定轴的物体,在力偶的作用下,物体将绕固定轴转动;没有固定轴的物体,在力偶的作用下物体将绕通过质心的轴转动。

力偶臂

力偶之两个力之间的垂直距离。见力偶条图1-24所示。

轮轴

是固定在同一根轴上的两个半径不同的轮子构成的杠杆类简单机械。半径较大者是轮,半径较小的是轴。从形式上看是圆盘,但从实质上看起来只有它们的直径或半径起力学作用。用R表示轮半径,也就是动力臂;r表示轴半径,也就是阻力臂;O表示支点。当轮轴在作匀速转动时,动力×轮半径=阻力×轴半径,所以轮和轴的半径相差越大则越省力。上式动力用F表示,阻力用W表示,则可写成FR=Wr。 即利用轮轴可以省力。若将重物挂在轮上则变成费力的轮轴,但它可省距离。轮轴的原理也可用机械功的原理来分析。轮轴每转一周,动力功等于F×2πR,阻力功等于W×2πr。在不计无用阻力时,机械的 日常生活中常见的辘轳、绞盘、石磨、汽车的驾驶盘、手摇卷扬机等都是轮轴类机械。

滑轮

滑轮是属于杠杆变形的一种简单机械,是可以绕中心轴转动的,周围有槽的轮子。使用时,根据需要选择。滑轮可分为定滑轮、动滑轮、滑轮组、差动滑轮等。有的省力,有的可以改变作用力的方向,但是都不能省功。

定滑轮

滑轮的轴固定不动,它实质上是一个等臂杠杆。动力臂和阻力臂都是滑轮的半径r,根据杠杆原理Fr1=Wr2。它的机械利益为 变了动力的方向,如要把物体提到高处,本应用向上的力,如利用定滑轮,就可以改用向下的力,因而便于工作。

动滑轮

滑轮的轴和重物一起移动的滑轮。它实质上是一个动力臂二倍于阻力臂的杠杆。根据杠杆平衡的原理Wr=F·2r,它的机械利 改变用力的方向。其方向是与物体移动的方向一致。

滑轮组

动滑轮和定滑轮组合在一起叫“滑轮组”。因为动滑轮能够省力,定滑轮能改变力的方向,若将几个动滑轮和定滑轮搭配合并而成滑轮组,既可以改变力的大小,又能改变力的方向。普通的滑轮组是由数目相等的定滑轮和动滑轮组成的。而这些滑轮或者是上下相间地坐落在同一个轮架(或叫“轮辕”),或者是左右相邻地装在同一根轴心上。绳子的一端固定在上轮架上,即相当于系在一个固定的吊挂设备上,然后依次将绳子绕过每一个下面的动滑轮和上面的定滑轮。在绳子不受拘束的一端以F力拉之,被拉重物挂在活动的轮架上。对所有各段绳子可视为是互相平行的,当拉力与重物平衡时,则重物W必平均由每段绳子所承担。若有n个定滑轮和n个动滑轮时, 且为匀速运动时,则所需之F力的大小仍和上面一样。因此,在提升重物时才能省力。其传动比乃为F∶W=1∶2n。注意,在使用滑轮组时,不能省功,只能省力,但省力是以多耗距离(即行程)为前题的。 前边所分析的定滑轮、动滑轮以及滑轮组,都是在不计滑轮重力,滑轮与轴之间的摩擦阻力的情况下得出的结论。但在使用时,实际存在轮重和摩擦阻力,所以实际用的力要大些。

差动滑轮

即链式升降机,是一种用于起重的滑轮组。上面是由两个直径不同装在同一个轴上的圆盘A、B组成的定滑轮。下面是一个动滑轮,用铁索与上面的定滑轮联结起来而成滑轮组。若大轮A的半径是R,小轮B的半径是r,如图1-25所示。当动力F拉链条使大轮转一周,动力F拉链条向下移动了2πR,大轮卷起链条2πR,此时小轮也转动一周,并放下链条长2πr于是动滑轮和重物W上升的高度为 由于2R大于(R-r),差动滑轮的机械利益大于1,若提高机械利益,可加大两轮的半径同时缩小两轮间的半径差。这种机械,亦称“葫芦”,有手动,也有用电来驱动的。链条是闭合的,为防止滑轮和链条间的滑动,滑轮上有齿牙与链条配合运动。

斜面

简单机械的一种,可用于克服垂直提升重物之困难。距离比和力比都取决于 简单机械

倾角。如摩擦力很小,则可达到很高的效率。用F表示力,L表示斜面长,h表示斜面高,物重为G。不计无用阻力时,根据功的原理。得 FL=Gh。实验证明,沿着光滑斜面向上拉重物数学要的拉力F小于重物的所受的重力G,即利用斜面可以省力,当斜面高度一定时,长度L不同的斜面所需的拉力也不同:L越长,F越小,越省力 倾角越小,斜面越长则越省力,但费距离。

螺旋

属于斜面一类的简单机械。例如螺旋千斤顶可将重物顶起,它是省力的机械。千斤顶是由一个阳螺旋杆在阴螺旋管里转动上升而将重物顶起。根据功的原理,在动力F作用下将螺杆旋转一周,F对螺旋做的功为F2πL。螺旋转一周,重物被举高一个螺距(即两螺纹间竖直距离),螺旋对重物做的功是Gh。依据功的原理得 很小的力,就能将重物举起。螺旋因摩擦力的缘故,效率很低。即使如此,其力比G/F仍很高,距离比由2πL/h确定。螺旋的用途一般可分紧固、传力及传动三类。

齿轮和齿轮组

两个相互咬合的齿轮,在它们处于平衡状态时,不省力,因为齿轮的实质是两个等臂杠杆,所以咬合的齿轮不省力,只省圈数。

亦称“尖劈”,俗称“楔子”。它是简单机械之一,其截面是一个三角形(等腰三角形或直角三角形)。三角形的底称作劈背,其他两边叫劈刃。施力F于劈背,则作用于被劈物体上的力由劈刃分解为两部分,如图1-26所示。P是加在劈上的阻力,如果忽略劈和物体之间的摩擦力,利用力的分解法,知P与劈的斜面垂直,P的作用可分成两个分力:一个是与劈的运动方向垂直,它的大小等于P·cosα,对运动并无影响;另一个是与劈的运动方向相反的,它的大小等于P·sinα,对运动起阻碍作用。所以,当F=2P·sinα时劈才能前进,因而P与F大小之比等于劈面的长度和劈背的厚度之比,因此劈背愈薄,劈面愈长,就愈省力。劈的用途很多,可用来做切削工具,如刀、斧、刨、凿、铲等;可用它紧固物体,如鞋楦榫头,斧柄等加楔子使之涨紧;还可用来起重,如修房时换柱起梁等。

是描述物体状态改变过程的物理量,能量变化的量度。功的概念来源于日常生活中的“工作”一词。在物理学中,它有特殊的含义。当物体在恒力F的作用下,力的作用点的位移是S时,这个功就等于力跟距离的乘积。对初中学生来说,只要明确“在力的作用下,物体沿力的方向通过了一段距离,那么这个力就对物体做了功”,这是指物体在恒力作用下,沿力的方向作单向直线运动的情况,所以对功的计算可用公式W=FS。当物体在恒力作用下,作非单向直线运动,如竖直上抛运动、平抛运动、斜抛运动等等,物体受力方向和运动方向不一定是一致时,对功的理解应加深为“力对物体所做的功,等于力的大小、力的作用点的位移大小,力和位移间夹角的余弦三者之乘积”即W=FScosα。式中W表示外力F对物体所做的功,S表示物体移动的路程,α表示F与S之间的夹角。根据公式研究力对物体做功的一些情况: 1.当α=0°时,W=FS,力对物体做正功; 2.当0°<α<90°时,1>cosα>0,则力F的有效分力Fcosα和物体的运动方向一致,力F对物体做正功; 3.当α=90°时,cosα=0,则W=0,此时力F对物体不做功; 4.当180°>α>90°时,-1<cosα<0,则W<0,即W为负值。在这种情况下F对物体做负功,也可说成物体克服阻力F做功; 5.当α=180°时,则W=-FS,这时力F对物体做负功,或者说成物体克服阻力F做功。 必须注意:在研究有关“功”的问题时,应分清有没有做功,谁在做功。功是一个只有大小而没有方向的物理量,它是标量而不是矢量。至于正功和负功,不过是区别外力对物体做功还是物体克服阻力做功,或用来表示力与路程同向还是反向,并不是功有方向性。 功是力对空间的累积效应。力对物体做功,使物体发生位置或运动状态的改变,因而也就发生了机械能的改变。功即是反映在这一过程中,物体机械能改变多少的物理量。在力学中功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。功的单位和能量单位一样,在国际单位制中,都是焦耳。 计算变力做功是把运动的轨迹分成许许多多无限小的小段,在每个小段内,可以把力看作为恒力,按恒力做功的定义来计算在各个小段内所做的功,最后把各个小段的功加起来,就是变力做的功,即A=ΣFi·ΔSi,如果力和位移都是连续的,则可用积分法计算,

功的原理

亦称“机械功的原理”。即动力对机械所做的功等于机械克服阻力所做的功。也就是说利用任何机械都不能省功。动力功W动,又称输入功或总功。阻力功W阻,包括克服有用阻力所做的W有用(又称输出功)和克服无用阻力所做的W无用(又称损失功),即W动=W阻=W有用+W无用。也可写成W输入=W输出+W损失。功的原理是机械的基本原理。要省力就要多移动距离,要少移动距离就要多用力,使用任何机械都不能省功。在机械做功过程中,只有在不存在无用阻力,机械本身作匀速运动的理想情况下,有用功才等于总功,效率为100%。事实上,必然存在无用阻力,效率一定小于100%,也就是说使用任何机械,在实际情况下总是费功的。应明确,只有在理想情况下,有用功才等于总功。

正功

作用力的方向和力的作用点的位移方向之夹角小于90°且大于或等于0°时(即α为锐角),根据公式作用力A做正功。当力F与位移S夹角α=0°时,W=FScos0°=FS,F做最大正功;0°<α<

负功

当作用力方向与力的作用点位移方向夹角大于90°且小于或等于180°时,这时cosα<0,根据公式功为负。力对物体作负功-A就代表受力作用的物体克服阻力作了正功A。这两种说法描述的是同一物理过程。例如,空气压缩机中空气对活塞作负功,也可以说成是活塞克服空气的压力作正功。又如,汽车紧急制动,车轮停止转动,轮胎在地面上滑动,这时摩擦力对汽车作负功,反过来也可以说汽车克服摩擦力作正功。

功率

功跟完成这些功所用时间的比值叫做“功率”。最初定义功率为“单位时间里完成的功”,它是指做功快慢不变的情况,初中学生易于掌握。“功跟完成这些功所用时间的比值”这一定义功率,对于做功快慢不变的情况,既表示平均功率,又表示即时功率。对于做功快慢不均匀的情况,如时间取得长些,则为平均功率;时间趋于零,这一 率,只能表示机器在一段时间t内的平均功率。而由公式P=Fv计算出来的功率就有了不同的含义。若速度v代表平均速度,那么P代表平均功率,如果v代表即时速度,那么P就代表机器在某瞬时的即时功率。 公式中力是一个矢量,速度也是一个矢量,而功率却是一个标量。 方法,一为“标积”;一为“矢积”。两矢量的“标积”为一标量,其大小(к)为两矢量的大小和两矢量夹角的余弦的乘积,用公式表示为 式P=Fv中,实际上P应为 矢量和 矢量的标积,即 所以得到的功率P应为一标量。 关于公式P=Fv,中F与v成反比的关系,应明确,不能脱离具体条件,防止得出谬误的结果。因为机器的牵引力要受速度的限制,又受机器的构造、运转条件等限制,任何机器在设计制造时,已规定了它的正常功率和最大作用力。超过最大作用力范围,牵引力和速度成反比这一关系就不能适用。另一方面也不能使机器的牵引力趋近于零,而使机器的速度无限制地增加。因为任何机器在工作时要受到阻力作用,阻力还与机器运转的速度有关。即使在没有负载的情况下,机件间的摩擦阻力仍然存在。为维持机器的运转,发动机的牵引力不能小于它所受的阻力。因而它的速度也不能无限增加。因此,任何机械在有一定的最大输出功率的同时,还具有一定的最大速度和最大作用力。 功率的常用单位是瓦特(焦耳/秒),简称瓦,单位符号W。瓦特这个单位较小,技术上常用千瓦做功率的单位。过去还有尔格/秒、牛顿·米/秒、千克力·米/秒。 间t内的平均功率。当物体受恒力作用时也可表示为P=F 。式中 表示某段时间的平均速度。平均功率随所取的时间不同而不同,因此在谈到平均功率时,一定要指出是哪一段时间内的平均功率。参阅功率条。

即时功率

即“瞬时功率”,简称功率。描述机械在某一瞬间作 物体运动即时速度的乘积。作平均速度时,P当然代表平均功率,如果作即时速度,那么P就代表机械在某瞬时的即时功率。当作匀速运动时,即时功率和平均功率相同 杠杆概念:当动力点离支点的距离小于阻力点离支点的距离时,省力。 当动力点离支点的距离大于阻力点离支点的距离时,费力。 当动力点离支点的距离等于阻力点离支点的距离时,不省力也不费力。

编辑本段分类法

第一种分类法

第一类杠杆:是动力F和有用阻力W分别在支点的两边。这类杠杆 不省力也不费力。例如,剪金属片用的剪刀,刀口很短,它的机械利益远大于1 。这是因为金属板很硬,刀口短,刀把长,即动力臂大于阻力臂,可以少用力。属于这种情况的杠杆还有克丝钳等。家庭裁衣剪布用的剪刀,把与刃基本是等长的,即动力臂等于阻力臂,属于不省力也不费力的类型。因为布的厚度较薄,不需太大的力,剪布要直故刀口要长些,为此用力不大,布剪的也直。属于这种类型的还有物理天平。又如理发用的剪刀,刀口很长,即动力臂小于阻力臂,它的机械利益小于1。这是因为剪发本来不需要多大的力,刀口长一些,能够剪得快一些和齐一些。 第二类杠杆:是支点和动力点分别在有用阻力点的两边。这类杠杆的动力臂大于阻力臂,其机械利益总是大于1,所以总是省力的。例如,用铡刀铡草、独轮车等都是这类杠杆。 第三类杠杆:是支点和有用阻力点分别在动力点的两边,这类杠杆的动力臂小于阻力臂,其机械利益总是小于1,所以总是费力的。例如,缝纫机的脚踏板、夹食品的竹夹子都属于这类杠杆。

第二种分类法

第一类杠杆:是省力的杠杆,即动力臂大于阻力臂。例如,羊角锤、木工钳、独轮车、汽水板子、铡刀等等。 第二类杠杆:是费力的杠杆,即动力臂小于阻力臂。如镊子、钓鱼杆、理发用的剪刀。 第三类杠杆:不省力也不费力的杠杆,即动力臂等于阻力臂。其机械利益等于1。如夭平、定滑轮等。

清脆的彩虹
想人陪的小刺猬
2025-04-17 14:56:48
加速度

速率 (有方向的速度) 的改变称为加速度。 一个物体加速,减速,或改变方向, 称之为加速度。 大部分大型游乐设备包括加速度。 当下坡,或急速转弯, 设备可能提高速率或加速度。 当上坡,或沿直线运动, 设备可能减小速率或减速度。 当过山车下坡,地心引力使车体运动的速度越来越快, 这是加速度。 当过山车上坡,车体运动的速度越来越慢, 这是减速度。 过山车的加速度与车体的质量和推拉的动力有直接的关系。

向心力

当过山车沿着回环运动, 向心力发生作用。向心力是物体沿着圆周运动而产生的. 例如当你沿着下滑曲线向地面运行, 地心引力使过山车沿直线作下滑运动,但是轨道是曲线的,向心力里又使过山车沿曲线运动. 乘客在过山车上的感觉是被抛离轨道, 但是地心引力又使车体的的确确运行在轨道上作圆周运动,所以指向圆周或曲线内部的动力是必须的。 对于指向圆周或曲线内部的动力, 称之为向心力。

能量(动能+势能)

能量使物体工作

动能- 正被使用的能量, 能量产生运动。

势能--被储存的能量, 以后再使用

能量的守恒定率: 能量可以从一种形式转化为另一种形式,但是不回自动生成和消失。

当马达驱动过山车攀登到达第一个坡度, 过山车储存越来越多的势能。 当重力牵引过山车沿斜坡下滑, 势能又转化为动能。 斜坡上离顶部越远,势能转化为动能就越多, 乘客能感觉到速度的加快。 在斜坡的最底部, 速度最快。

当车体攀登第二个山坡,动能又逐渐转化为势能, 过山车的速度逐渐减慢。 高度越高,意味着动能转化为势能越多。 这个动能势能的转化守恒定率,保持过山车沿轨道上下运动。 而动能的总量是保持不便,只是重一种形式转化为另一种形式。 请注意第一个山坡是过山车的最高点,为什么?

然而,一部分的能量转化摩擦力,风阻,车轮的转动和其他一些消耗能量的因素。过山车设计者充分考虑摩擦力在过山车运行中所扮演的角色。 因此设计师降低山坡设计的高度, 以保证过山车能够完全驶过山坡。

过山车能够运行是因为两个基本点: 地球引力和能量守恒。

作用力

作用力的表现形式是推或拉。 平衡的作用力表现为物体在受到几个力作用时,物体保持静止状态或匀速直线运动状态。 非平衡力表现为物体在受到几个力作用时,物体保持非静止状态或变速直线运动状态

牛顿第一和第二定律定律特别符合过山车的工作原理,它们联系到重力和加速度。过山车从山坡的顶端是一系列复杂的倾斜的下降运动;但又是一个简单的力学原理。

我们以G作为过山车所受到的重力。 1G是坐在静止过山车的乘客,或在地球任何地方所受到的重力。

摩擦力

两个互相接触的物体, 当它们发生相对运动时,就会在接触面上产生一种阻碍相对运动的力, 这种力就叫摩擦力.

摩擦力产生的条件是两物体相互接触, 且接触面粗糙, 有相互挤压两物体之间要发生或已经发生相对运动.

摩擦力阻碍物体相对运动或相对运动的趋势, 因此摩擦里的方向与物体相对运动或相对运动的趋势相反。

所以在物体的运动中,一部分动能转化为摩擦力。 过山车的设计者一定要知道摩擦力在车体运动中所起的作用。 设计者可以用摩擦力以降低过山车行进中的速度和到站后的安全停止。

重力

由于地球的吸引里而使物体受到的力叫作重力.

对过山车最为重要和具有影响的是地球引力。 地球引力使物体从一个点往另外一点运动。由于重力引起的加速或减速依据轨道倾斜的角度坡度越陡, 加速或减速就越明显。

重力加速度

描述压力的通常单位是 g。 一个 g 等同与地球引力。 航天飞机起飞时,宇航员承受是 3 g 的压力,既三倍于地球引力。

斜坡 #1

在设计斜坡#1 时, 请考虑以下的问题:

斜坡有没有足够的高度,以提供过山车有足够的动力使过山车通过斜坡#2 和回环。

如果过山车的速度过快,当过山车通过斜坡顶部时,会发生什么情况, 为什么?

地球引力的变化对于过山车上下山坡和穿过回环, 会产生什么样的影响。

你能不能改变地球的引力?

斜坡#2

为什么斜坡#2的高度决定过山车能否穿过回环?

什么样斜坡的高度设计使过山车能通过回环,而又不坠毁?

摩擦力的设计是不是影响过山车能否顺利通过斜坡#2 和饶过回环的因素?

重力是如何影响车厢在轨道上行进的?

惯性

一个静止的物体,如过山车,没有外力的推拉, 它是不会运动的。 物体质量越大, 惯性越大。

如果没有外力使过山车加速或减速, 行进中的过山车会按原来的方向继续运动。 运行过山车的阻力改变它的速率是惯性的另一例子。

对于回环设计和,必须决定回环的大小尺度。 惊险的过山车通常会有回环或螺旋设计。 你惊险的经历不仅仅是飞快的速度,巨大的落差, 也包括令人难忘的上上下下的翻滚。

如果你细看过山车回还的曲线,你所见到的不是圆, 而是泪状物。这个形状称作椭圆形回环. 这个称谓早在 18 世纪瑞士天才数学家雷纳 就曾提出。只是最近过山车设计工程师意识到这是一个完美的翻转形状。

质量

质量是物体所含物质的多少。

动量

物体的动量是质量乘以速率。如果质量或速率很大, 物体的动量也很大。 物体的动量越大,使物体停下来或改变物体的运动方向就越困难。

牛顿的运动三定律

牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。

1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律-- 力学规律的支配。

早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。

牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着,终于,他发现了对人类具有划时代意义的万有引力。

牛顿定律

牛顿是十七的世纪最有影响的科学家之一。牛顿三定律 解释运动物体的各方面, 对于建造过山车也是很有帮助的 。

1、第一定律(物体在没有外力作用的情况下会保持原有的状态);

2、第二定律(F=ma ,物体的加速度,与施加在该物体上的外力成正比);

3、第三定律(作用力与反作用力大小相等,方向相反);

1. 牛顿第一定律(惯性定律)

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

物体没有受外力作用时保持静止或匀速运动

物体在受到平衡力作用时保持静止或匀速运动

物体在受任意力作用时作变速运动。

2 物体的加速度跟作用力成正比,跟物体的质量成反比。这就是牛顿第二定律。

加速度和力都是矢量,它们都是有方向的。牛顿第二定律不但确定了加速度和力的大小关系,还确定了它们的方向之间的关系,加速度的方向跟引起这个加速度的力方向相同。

3.第三定律

两个物体间的作用力和反作用力总是大小相等,方向相反,并且作用在同一直线上

F1 =- F2

①力的作用是相互的同时出现,同时消失。。

②相互作用力一定是相同性质的力

③作用力和反作用力作用在两个物体上,产生的作用不能相互抵消。

④作用力也可以叫做反作用力,只是选择的参照物不同

⑤作用力和反作用力因为作用点不在同一个物体上,所以不能求合力

速度/速率

速度是距离除以时间或物体运动的比率。 对于过山车的建立,正确的理解速度, 速率和加速度都是极为重要的三个方面。 过山车必须兼顾安全和惊险,安全是过山车建造的第一要素,毫无疑问,乘客在过山车的乘坐中,必须是绝对安全的。 但速度和加速度的惊险度是过山车成功的重要因素, 这关于速度的控制。 所以包括山坡,直线,曲线,俯冲,回环和刹车系统等都是经过科学的论证和设计的,还包括材质,结构的设计都是安全基础上再生产设计的。 科学的理论基础是过山车生产设计的核心。

速率。

速率是物体在某个方向上的速度。 当方向改变,速率也随之改变。过山车可以保持固定的速度,但是随着方向的变化, 速率始终是不断的发生变化。速率越快,过山车运行的速度也就越快。 通常速度可以用来代替速率,但是, 速率是有方向意义上的速度。 例如向西 100 公里/ 小时,是速率, 向西是指以 100 公里/ 小时行进的。

失重

有两种失重的经历: (1)足够快的速度离开地球到足够高的距离使所受重力近于零 ( 重力可以作用与无限距离,人永远不可能脱离)。(2) 下落的速度和和重力加速度是一样的。 即在地球上的加速度是以 9.8 米/ 秒竖直向下行进。 要使人有重量,人必须感觉到来自地面的重力反作用力。

一些游乐设备在行进中,提供了 9.8 米/秒的下落速度,使人产生失重的感觉。

重量

重量是地球引力作用于物体而产生的压力。

重量作用于地球引力。 在月球上的引力是地球上的 1/6. 所以,在月球上,相应物体的重量只有地球上的 1/6

做功工作力

做功是指你用了多少拉力或推力, 使过山车在行进某一段距离。如果你仅仅是握着一个盒子, 就没有作功于盒子。如果你拖拽盒子, 就在做功了。过山车通过马达作用于链条, 使过山车沿着轨道行进而产生的.。作功克服重力而提升过山车到达某个高度。过山车越重, 则需要作越多的功。山坡的高度越高, 同样需要作越多的功。重力使过山车下降, 其实也在作功。

正数值和负数值的地球引力

重力并不是地球引力. 重力只是地球引力的一部分. 在 1G, 是地球拉你向它中心点所受的力.

第三定律告诉我们两个物体间的作用力和反作用力总是大小相等,方向相反,并且作用在同一直线上。你的体重使座位的表面受到压力,但你又受到来自座位表面的反作用力,所以你可以相对座位静止地坐着。在自由落体, 座位不再支持你, 没有来自座位表面的反作用作用你身上,所以你感觉下落.座位没有作用于你, 你所经验的是0 G.

你能也经验G力量大于1. 这一般发生在落体的底部. 在这种情况下, 你感觉自己被推向座位, 但实际情况是座位把你向上推.

假设小山的顶部比抛物线更为小的角度。列车固定在轨道上,沿轨道行进然而乘客按抛物线的轨迹行进, 所以将会离开座位.. 如果长久的保持这种状况, 乘客最终会碰上安全栏杆, 而安全杆会有一个向下的作用力,使乘客座保持在位置上. 这就是负数G值,在过山车的设计中十分的明显。

近来, 线性地球引力更多的在过山设计中得以运用.刺激的加速经历使之运用的颇为广泛。线性地球引力表现为过山车加速向前运动, 正数G值的增加. 随同发生的是乘客的惯性, 身体的重心被你遗留在后面, 这也正是惊险的原因.

地球侧引

如果过山车按曲线运动行进, 但车体的运动趋势是沿直线运动的. 轨道会有一个侧面的力作用于车体, 使之沿轨道行进. 同样的, 车体作用力于乘客. 当乘客按惯性向前运动,他们受到车体的作用力. 虽然他们感觉到曲线外面的压力(通常指的是地心引力), 沿着乘客转向的方向.几个因素同时影响侧部的地球引力大小: 火车的速度, 曲线的弧度, 和曲线的数量.

曲线

如果轨道的倾斜是向内的, 那么车体也会向内倾斜, 车体的地面会对乘客产生作用力, 而不是侧面.

所以一些G 值表现为正数.

通常,更大的曲线的转弯, 较少侧部力量和更多的正数的G 值.

反转

反转在回环轨道中, 作用力和转弯相似, 因为车体趋向于直线行使, 但是轨道是固定设计好的. 因此, 在回环中, 正G值产生.

由于正G值意味着座位反作用于乘客的身体, 使你在过山车乘坐中有脱离车体的感觉.

这就是过山车的物理原因

热心的火
坦率的海燕
2025-04-17 14:56:48
ps能拉黑白灰渐变的是图层蒙版,矢量蒙版只能单色,而且是路径的。。

蒙版修改可以点下去除和预览图的链接链条,对蒙版放大缩小移动等操作,做好再点下链条恢复链接。。还可以去链条后删除这蒙版,重新添加蒙版再做。。

历史记录恢复对当前操作有效,保存后再打开的无效。。

悦耳的电话
忧伤的期待
2025-04-17 14:56:48
2C:地图——定位——导航——精准推荐

2B:地图——定位——大数据分析——大数据运营

地图方面有:智慧图、点道,其中智慧图是矢量地图相对最Nb;

位置服务的核心基础是定位,目前该部分定位最精准的是智慧图,wifi精度3米,beacon精度1米,延迟1秒以内。

没有定位就不存在实时导航。

精准推荐的有smartac、智慧图、

大数据分析的有智慧图、鹏博士

个性的板栗
怕孤独的狗
2025-04-17 14:56:48
你是哪一家单位的?公司在什么地方? 你可以用SEW的变频器61B,两台变频器做位置同步,一台做主机一台做从机,主从机均可以设定输出减速比,位移差很小的。可以设定转矩监控,位移传感器可以免了。

活泼的鸭子
单薄的小鸭子
2025-04-17 14:56:48
马自达CX-5正时系统采用链传动,也免去了日后更换正时皮带的繁琐工作,降低了新CX-5的使用成本。正时系统的传动部分分为正时链条和正时皮带。很多人关心哪种传播形式更好。正时皮带在发动机上使用已久,技术成熟,成本低,噪音小,

马自达cx5发动机正时是链条还是皮带(马自达cx4是正时皮带还是链条)

马自达CX-5正时系统采用链传动,也免去了日后更换正时皮带的繁琐工作,降低了新CX-5的使用成本。

正时系统的传动部分分为正时链条和正时皮带。很多人关心哪种传播形式更好。正时皮带在发动机上使用已久,技术成熟,成本低,噪音小,但需要定期检查维护,通常每行驶5 ~ 10万公里就需要更换一次。

正时链条具有结构紧凑、传动功率大、可靠性和耐磨性高、终身免维护等明显优势。但与传统同步带相比,其噪音一般略大。如果正时皮带更换周期无法确定,可以以汽车制造商规定的保养周期为准。

无论是同步带还是链条,从外面看都是看不见的,还有一个侧盖。从覆盖正时皮带或链条的盖板的材质和密封程度来看,如果盖板是塑料材质,只用几个简单的螺丝固定,那就是里面的正时皮带。如果是铁或铝做的,螺丝多,密封严密,就是链条。皮带的盖板只覆盖灰尘和异物,而链条的盖板除了覆盖异物之外,还有密封功能,因为它是由油润滑的,油中含有油。

马自达cx5发动机怎么样(马自达cx5马力)

马自达cx-5在城市道路上行驶,动力充足,高速动力源源不断,指向性精准,刹车油门灵敏,操作方便。

马自达cx-5最大的优势在于驾驶。2019年,虽然2.0升自吸发动机有155马力,最大功率114kW,最大扭矩200N·m,最大扭矩转速4000rpm,看起来平平淡淡,6速自动变速箱也是“老派”的杂货购物车配置,但组合在一起,却是相得益彰。更何况,驾驶者的快感并不依赖于复杂的技术,也不体现在冰冷的技术数据上。那种来自于部件之间的精心调校和完美贴合的精准性,只要你是一个热爱驾驶的人,相信你在驾驶之后会有一定的体验。

马自达cx-5拥有黑科技配置,即名为GVC的加速度矢量控制系统,根据转向角度和车轮上传感器的信号,在30N·m范围内调节发动机的扭矩输出,从而达到更好的操控性。转向方向好,低速轻,中高速逐渐加大,指向性也很准。

2019年的官方马自达cx-5没有给出油耗数据,但是2017年2.0L车型的油耗是6.7L/100km,所以2019年车型的油耗应该和这个差不多。

总的来说,马自达cx-5的动力总体来说还是比较充足的,驾驶起来感觉比较轻松,刹车和油门都比较灵敏,整车操作起来还是很灵活的。

马自达cx5发动机正时是链条还是皮带(马自达cx4是正时皮带还是链条)@2019

迷人的大米
甜甜的舞蹈
2025-04-17 14:56:48
横波,因为电磁场的电场轨迹形成圆,就是一个平面,平面的方向就算不从横波纵波的发射方向直接比较,也可以知道平面任何方向都不是传递方向,只有平面的垂直方向才可能是传递方向

磁场方向和电场方向雷同

电磁波属于典型的链条交叉横波

就看成一个链条,一个电场链圈连接一个垂直的磁场链圈,再连接垂直的电场链圈,无线链接下去,任何一个链圈和链条延伸方向垂直,他们三者相互垂直

延伸的反向实际上是电生磁,磁生电过程中形成的距离方向