智能制造包括哪些行业
智能制造包括新材料、电池制造、新能源发电、钢铁制造、通信设备、智能家电、电动汽车、智能家居等上下游行业,而后续还将衍生出诸如智能城市、智能交通等更多新的行业。智能汽车和智能家居是影响人们生活最重要的两个方面,都具有非常巨大的市场空间。智能化汽车设备主要体现在众多辅助驾驶系统上,如智能雨刷、自动前照灯、智能空调、智能悬架、防打瞌睡系统等等。电子信息技术的广泛应用,为汽车的智能化提供了广阔的前景。
智能制造工程专业就业前景非常广阔,毕业生就业率非常高,毕业后可以从事智能产品设计及制造,数控机床和工业机器人安装、调试、维护和维修,智能化工厂系统集成、信息管理、应用研究和生产管理等工作。
智能制造工程专业岗位需求量比较大,但是市场上智能制造工程专业已经供不应求,将来智能制造工程专业发展一定会突飞猛进,另外智能制造工程专业以研发型人才为主,培养的是国家知识人才,相信很多人都会报考智能制造工程专业的。
智能制造工程专业立足“新工科”培养理念,该专业主要研究智能产品设计制造、智能装备故障诊断、维护维修,智能工厂系统运行、管理及系统集成等,培养能够胜任智能制造系统分析、设计、集成、运营的学科知识交叉融合型工程技术人才及复合型、应用型工程技术人才。
课程体系:《人工智能技术》、《工业机器人技术》、《计算机程序设计(Python、Java)》、《智能制造信息系》、《工业互联网》、《数据库技术》、《机械设计基础》、《物联网技术与应用》等。
就业方向:智能制造行业:智能产品设计及制造、智能制造产品开发、智能产品管理、系统架构规划。
易云科技了解到的智能制造包含的内容如下:
全连接:缺少任一节点的连接,都有可能影响全面自动化的实现。
全控制:除了对环节的控制,还需要对智能设备进行监测和控制。
资源整合:智能制造系统化工程需整合供应链、生产、物流、服务平台、营销资源等等,才能最大化的实现智能制造的自动化及产能最大化。
数据采集及整合应用:企业内外大小数据的采集及整合应用是智能制造效率的基础。
数据传递通道与时时交互:多节点交互、监测和控制,以及跨行业、跨领域、跨产品等多场景的要求,需要建立新的、系统性的、统一的协议标准,除了整体架构和基础物联网外,还要先从同一行业(领域)开始细化和建立统一标准。
数据模型的多场景创建与打通:真正考验智能制造的是基于不同场景和条件的数据架构搭建和模型应用,以及多模式和场景下的数据及数据模型打通。
1.智能产品
智能制造系统中的智能产品是指在产品制造、使用和服务过程中,能够实现对自身状态、环境自感知,具有故障诊断功能;能够具有网络通信功能,提供标准和开放的数据接口;能够具有自适应能力等。
2.智能生产
生产制造的智能化是智能制造系统的核心部分,智能制造过程包括设计、工艺、生产过程的智能化。
(1)智能设计。智能设计包括产品设计、工艺设计等诸多方面,利用智能化技术与设计链条的各个环节结合。通过智能制造数据分析手段获取设计需求,通过智能创造方法进行概念抽取,通过样机试验和模拟仿真等方式进行功能与性能的测试与优化,保证最终设计的科学性与可操性。
(2)智能工艺与装备。智能化的制造装备可以完成与制造工艺的“主动”配合,实现设备—人—工艺之间的高效协同。智能制造与装备、加工状态、工件材料和环境有关的信息进行自分析,根据设计要求与实时动态信息进行自决策,依据决策指令自执行。
(3)智能制造过程。针对制造工厂或车间,引入智能技术与管理手段,实现生产资源最优化配置、生产任务和物流实时优化调度、生产过程精细化管理和智慧决策。
3.智能制造模式
智能制造技术发展的同时,催生了许多新兴制造模式。尤其工业互联网、工业云平台等技术的推广,使得研发、制造、售后服务等各产业链环节的企业实现信息共享,拓展了企业制造活动的地域空间与价值空间。如航空装备行业的协同开发、云制造、远程运维等模式。
智能制造模式首先表现为制造服务智能化,通过工业大数据等信息技术手段,提升供应链运作效率和能源利用效率,拓展价值链,为企业创造新价值。
因此,在智能制造系统中,高素质、高智能的人将发挥更好的作用,机器智能和人的智能将真正地集成在一起,互相配合,相得益彰。 智能制造系统能够在实践中不断地充实知识库,具有自学习功能。同时,在运行过程中自行故障诊断,并具备对故障自行排除、自行维