建材秒知道
登录
建材号 > 瓷片 > 正文

压电陶瓷片的电容值如何测量

贤惠的花瓣
美丽的冷风
2023-01-01 03:04:40

压电陶瓷片的电容值如何测量?用哪一种仪器测量?请参考内文

最佳答案
光亮的雪糕
无限的冬日
2025-04-22 13:55:12

压电陶瓷的等效电路中有静态电容和动态电容用HP4192量测,频率设定1KHz时,得到的电容值是2.8nF;估计只计算了静态电容再用一般电容表量测,得到的电容值是3.1nF。估计是两者之和

最新回答
喜悦的烤鸡
积极的啤酒
2025-04-22 13:55:12

1、主要仪器和试剂

1.1 仪器

WFD-Y2型原子吸收分子光光度计(北京第二光学仪器厂)

钙、镁空心阴极灯(日本岛津)

1.2 试剂

盐酸:优级纯

硝酸:优级纯

硫酸:优级纯

高氯酸:分析纯

氧化锶:分析纯,配制20%水溶液

氧化铝溶液:1毫克/毫升(用99.99%的铝片配制)

氧化钙标准溶液(甲):1毫克/毫升

配制方法是准确称取经灼烧的氧化镁(高纯)1.000克于250毫升烧杯中,加入1:1盐酸10毫升低温加热溶解,冷却后移至1升容量瓶中,用水稀释至刻度,摇匀。

氧化镁标准溶液(乙):20微克/毫升

配制方法是,准确吸取氧化镁标准溶液(甲)10毫升于500毫升容量瓶中,用水稀释至刻度,摇匀。

2、实验方法

根据原子吸收法的工作原理以及样品的情况,对钙、镁测定的影响因素进行了反复实验,从而确定了钙、镁的最佳测定条件。

准确称取在110℃烘干一小时的粉末样品0.1克置于铂皿中,用水润湿并使试样均匀散开,加入10毫升氢氟酸与0.5毫升高氯酸,在低温电炉上加热分解,蒸发近干,再加10毫升氢氟酸与0.5毫升高氯酸,在低温电炉上加热分解,蒸发近干,再加10毫升氢氟酸继续蒸发至大量冒高氯酸浓烟1~2分钟,冷却后,加4毫升盐酸(比重1.19)和10毫升水,加热使残渣溶解,再补加20毫升水,继续加热至溶解完全清澈透明,冷却至室温后,移入100毫升容量瓶中,加5毫升氯化锶(20%)溶液,用水稀释至刻度,摇匀。分别用4%盐酸,1%氯化锶的钙、镁标准系列,直接比较进行原子吸收光谱测定。

试样中各元素、氧化物的百分含量按下式计算:

M=C·A·A×10-6/G×100%

式中:M——试样中元素氧化物百分比含量,%

C——试样溶液中元素氧化物的浓度,微克/毫升

V——溶液的体积,毫升

A——试样溶液的稀释倍数

G——试样重量,克

2、结果与讨论

2.1 仪器条件的选择

①灵敏度

在上述条件下测得氧化钙的灵敏度为0.06微克/毫升(1%吸收),浓度为2微克的氧化钙标准溶液通常给出0.15左右的吸光度。测得氧化镁的灵敏度为0.0037微克/毫升(1%吸收),浓度为0.2微克/毫升的标准溶液通常给出0.24左右的吸光度。

②线性范围

标准系列为每毫升含氧化钙0、1、2、4、6、8、10微克,每毫升含氧化镁0、0.2、0.4、0.6、0.8、1.0微克4%盐酸和1%氧化锶的溶液,在上述条件下分别测定其吸光度,其工作曲线如图1。

由图可看出,氧化钙的工作曲线,其线性范围在1~7微克/毫升;氧化镁的工作曲线线性范围在0.1~0.6微克/毫升。

③分析线的选择

波长4227、2852是钙、镁最强的吸收线,适宜于(0.1~0.7)%CaO、(0.02~0.06)%MgO含量的样品测定,不需分离,具有操作简便,准确快速等特点。对于分析高浓度度的试样,可选择灵敏度低的谱线,以便得到适度的吸光度,改善曲线的线性范围。CaO在20~60微克,MgO在1~20微克范围内选择波长Ca2399、Mg2796的分析线,具有很好的线性关系,测得石灰石和白云石样品中的CaO、MgO的含量见表2。

表2 分析结果比较

试样

分 析 方 法

CaO(%)

MgO(%)

石灰石

原子吸收法

55.66

0.16

化学分析法

55.58

0.17

白云石

原子吸收法

27.42

19.56

化学分析法

27.54

19.56

由表2看出,原子吸收法测得的结果与化学分析法测得的结果十分相近。

④狭缝宽度

光谱通带直接影响测定灵敏度和标准曲线的线性关系,单色器的光谱通带由公式Δλ=D×S决定。

式中:Δλ——光谱通带宽度,Å;

D——分光器的倒数线色散率,Å/ 毫米;

S——狭缝宽度,毫米

因为对于仪器本身,D是确定的,Δλ仅由S决定。当吸收线附近有干扰与非吸收光存在时,使用较宽的狭缝会导致灵敏呀明显降低。非吸收线的存在也人使工作曲线发生弯曲。合适的狭缝宽度可用实验方法确定。其方法是,将试液喷入火焰中,调节狭缝宽度,测定不同狭缝的吸收值,当狭缝增宽到遣下程度,其他谱线或非吸收线出现在光谱通带内,吸收值立即开始减少,不引起吸收值减少的最大狭缝宽度,确定为最合适的狭缝宽度。WFD-Y2原子吸收光谱仪,狭缝宽度定为0.1毫米,具有比较灵敏的吸收率。

2.2 酸的影响

①配制每毫升含4微克CaO,0.4微克MgO,4%HCI、HNO3、HCIO4、H2SO3、H3PO4等5种酸的标准溶液,测定CaO、MgO的吸光度,其结果见表3。

从表3中可以看出,H3PO4、H2SO3对MgO的影响不明显,对CaO有明显的影响。主要原因是CaO在火焰中与P2O5、SO3形成了难熔的磷酸盐和硫酸盐,空气 — 乙炔火焰达不到其熔点温度,影响了对钙基态原子的形成,降低了原子的吸收信号。HCIO4、HNO3是氧化性酸,钙、镁的吸收有正效应。HCI是弱还原性酸,在利于溶液中化合物的稳定,又是实验室的通用酸,选用HCI作为测定溶液的介质最为适宜。

②盐酸浓度的影响

配制每毫升含4微克氧化钙,0.4微克氧化镁,2~12%不同浓度盐酸标准溶液测定其吸光度,结果见图2。

由图2可看出,盐酸浓度对钙、镁的吸光度的影响,在2~8%的盐酸浓度范围内影响不明显。当浓度>8%时,吸光度明显下降,原因是,溶液中盐酸的浓度高时,喷雾效率下降,使得火焰中原子浓度减少,导致吸收强度下降。在一般测定中,溶液的盐酸浓度保持在4%左右,或将试样和标准溶液中的盐酸浓度匹配一致,可减少误差。

2.3 共存离子的影响

配制4%盐酸溶液,每毫升含4微克CaO、0.4微克MgO为标准溶液1,每毫升含标准溶液1相同的元素含量再配入每毫升4微克Fe2O3、20微克Na2O3、30微克K2O为混合离子标准溶液2;每毫升含混合离子标准溶液2的相同元素含量,再配入20%Al2O3为混合标准溶液3,每毫升含混合标准溶液3的相同元素含量,再加入1%的氯化锶为混合标准溶液4.分别测定这4种标准溶液的吸光度,其结果见表4。

表4 共存离子的影响

元素

吸光度

标准溶液1

标准溶液2

标准溶液3

标准溶液4

CaO

0.35

0.34

0.10

0.34

MgO

0.51

0.49

0.13

0.50

从上表可以看出,标准溶液1和混合标准溶液2的吸光度基本一致,显示出共存离子钾、钠、铁对钙、镁的测定没有影响。在混合标准溶液3中,由于20%Al2O3的存在,吸光度比标准溶液1、2下降3~4倍,对测定钙、镁显示出了明显的干扰。在混合标准溶液4中加入1%的氯化锶,吸光度和标准溶液1、2基本一致,显示了消除了Al2O3对钙、镁的干扰,原因是,在火焰中CaO、MgO与Al2O3形成了高晶格能、高熔点的尖晶石化合物(MgO·Al2O3)、(3CaO·5 Al2O3),空气 — 乙炔火焰达不到他们的熔点温度,影响了这些化合物的解离和基态原子的形成,严重的干扰了钙、镁的测定。在混合标准溶液中加入1%氯化锶,氯化锶和氧化铝形成了稳定的化合物,将钙、镁释放出来而消除了干扰。

根据资料介绍,同一份溶液中锌、镍、铜、锰、铬、铝等元素的存在不干扰钙、镁的测定,各元素间也存在不干扰钙、镁的测定,各元素间也存在相互干扰(共存元素铝、钛的干扰用入氯化锶来消除),所得结果和化学分析方法完全一致。因此,利用原子吸收法具有简便、快速的显著优点,更适用于陶瓷釉料、颜料的元素组成分析,可解决化学分析法中存在金属元素干扰钙、镁测定的难题。

2.4 标准样品的分析结果对比

表5列出了几种原料中CaO、MgO采用不同方法的分析结果。

由表5可以看出用原子吸收法测得的CaO、MgO的含量比化学分析法更接近于标准结果。由此说明,原子吸收法是一种快速、准确测定原料中CaO、MgO含量的行之有效的方法。

表5 标准样品测试结果对比

原料样品

化学分析法

原子吸收分析法

标准含量

名称

CaO

MgO

CaO

MgO

CaO

MgO

长 石

0.15

0

0.08

0.04

0.07

0.03

粘 土

0.35

0.10

0.15

0.07

0.12

0.05

焦宝石

0.40

0.20

0.35

0.15

0.37

0.14

由表5可以看出用原子吸收法测得的CaO、MgO的含量比化学分析法更接近于标准结果。由此说明,原子吸收法是一种快速、准确测定原料中CaO、MgO含量的行之有效的方法。

陶瓷原料包括高岭土、粘土、瓷石、瓷土、 着色剂、青花料、石灰釉、石灰碱釉等。

高岭土陶瓷原料,是一种主要由高岭石组成的粘土。因首先发现于江西省景德镇东北的高岭村而得名。它的化学实验式为:Al203·2Si02·2H20,重量的百分比依次为:39.50%、46.54%、13.96%。纯净高岭土为致密或松疏的块状,外观呈白色、浅灰色。被其他杂质污染时,可呈黑褐、粉红、米黄色等,具有滑腻感,易用手捏成粉末,煅烧后颜色洁白,耐火度高,是一种优良的制瓷原料。

粘土陶瓷原料是一种含水铝硅酸盐矿物,由长石类岩石经过长期风化与地质作用而生成。它是多种微细矿物的混合体,主要化学组成为二氧化硅、三氧化二铝和结晶水,同时含有少量碱金属、碱土金属氧化物和着色氧化物等。粘土具有独特的可塑性和结合性,其加水膨润后可捏练成泥团,塑造所需要的形状,经焙烧后变得坚硬致密。这种性能,构成了陶瓷制作的工艺基础。粘土是陶瓷生产的基础原料,在自然界中分布广泛,蕴藏量大,种类繁多,是一种宝贵的天然资源。

瓷石也是制作瓷器的原料,是一种由石英、绢云母组成,并有若干长石,高岭土等的岩石状矿物。呈致密块状,外观为白色、灰白色、黄白色、和灰绿色,有的呈玻璃光泽,有的呈土状光泽,断面常呈贝壳状,无明显纹理。瓷石本身含有构成瓷的多种成分,并具有制瓷工艺与烧成所需要的性能。我国很早就利用瓷石来制作瓷器,尢其是江西、湖南、福建等地的传统细瓷生产中,均以瓷石作为主要原料。

瓷土由高岭土、长石、石英等组成,主要成分为二氧化硅和三氧化二铝,并含有少量氧化铁、氧化钛、氧化钙、氧化镁、氧化钾和氧化钠等。它的可塑性能和结合性能均较高,耐火度高,是被普遍使用的制瓷原料。

着色剂存在于陶瓷器的胎、釉之中,起呈色作用。陶瓷中常见的着色剂有计三氧化二铁、氧化铜、氧化钴、氧化锰、二氧化钛等,分别呈现红、绿、蓝、紫、黄等色。

青花料是绘制青花瓷纹饰的原料,即钴土矿物。我国青花料蕴藏较为丰富,江西的乐平、上高、上饶、丰城、赣州,浙江的江山,云南的宜良,会泽、榕峰、宣威、嵩明以及广西、广东、福建等地均有钴土矿蕴藏。我国古代青花瓷使用的青花料一部分来自国外,大部分属国产。进口料中有苏麻离青、回青;常用的国产料有石子青、平等青,浙料、珠明料等。

石灰釉主要物质是氧化钙(Cao),起助熔作用,特点是高温粘度小,易于流釉,釉的玻璃质感强,透明度高,一般釉层较薄,釉面光泽较强,能清晰地刻划纹饰,南宋以前瓷器大多使用石灰釉。

石灰碱釉主要成分为助熔物质氧化钙以及氧化钾(K2o)、氧化钠(Na20)等碱性金属氧化物。特点是高温粘度大,不易流釉,可以施厚釉。在高温焙烧过程中,釉中的空气不能浮出釉面而在釉中形成许多小气泡,使釉中残存一定数量的未溶石英颗粒,并形成大量的钙长石析晶。这些小气泡、石英颗粒和钙长石析晶使进入釉层的光线发生散射,因而使釉层变得乳浊而不透明,产生一种温润如玉的视觉效果。石灰碱釉的发明与运用,是传统青瓷工艺的巨大进步。石灰碱釉出现于北宋汝窑青瓷中。南宋龙泉窑瓷器大量采用石灰碱釉,使釉色呈现出如青玉般的质感,如粉青、梅子青。可以说南宋龙泉青瓷已达到中国陶瓷史上单色釉器的顶峰。

威武的哈密瓜
顺利的帽子
2025-04-22 13:55:12
陶瓷老化痕迹物证鉴定技术方法

(1)目视观察:

在自然光下或照明光下,通过肉眼或借助放大镜对陶瓷器釉面状态进行初步观察和识别。

(2)显微检验:

对于通过目视观察难以辨别的陶瓷器细微老化痕迹形态,运用显微镜等放大仪器设备进行观察和识别。

(3)仪器检测:

运用光谱仪、能谱仪等分析仪器对陶瓷器釉层中的物质成分、元素进行测定。

(4)测算:

运用DM/WS1数码多功能取证检测系统等仪器对陶瓷器老化痕迹的大小、长度、宽度、高度、角度、弧度、深度、数量和距离等进行测算。

(5)图像分析:

运用光学或电子图像采集、数字图像处理、数字图像比对、数字图像电子测算等仪器设备对陶瓷器细微老化痕迹形态进行显微图像采集、比较和分析。

(6)模拟实验:

对一些难以判断的细微痕迹形态特征,通过模拟实验进行分析判断。

(7)检验记录:

1)鉴定人独立检验的记录。

2)鉴定组共同检验的记录。

3)意见分歧及讨论的记录。

4)检验中使用的仪器名称、检验过程、检验条件、检验结果等内容的进行记录。

(8)检验步骤:

1)显微观察 2)采集特征

3)标注特征

4)测算特征

5)特征分析

6)综合评断

传统的篮球
花痴的电灯胆
2025-04-22 13:55:12
扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。 扫描电子显微镜在新型陶瓷材料显微分析中的应用 1 显微结构的分析 在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。 由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。主要表现为: ⑴力学加载下的微观动态 (裂纹扩展)研究 ;⑵加热条件下的晶体合成、气化、聚合反应等研究 ;⑶晶体生长机理、生长台阶、缺陷与位错的研究; ⑷成分的非均匀性、壳芯结构、包裹结构的研究; ⑸晶粒相成分在化学环境下差异性的研究等。 2 纳米尺寸的研究 纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒 ”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。图 2所示是纳米钛酸钡陶瓷的扫描电镜照片,晶粒尺寸平均为 20nm。 3 铁电畴的观测 压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。铁电畴 (简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察电畴和畴壁的显微结构及相变的动态原位观察 (电畴壁的迁移)。 扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。图 3是扫描电子显微镜观察到的 PLZT材料的 90°电畴。扫描电子显微镜 与其他设备的组合以实现多种分析功能。 在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原位化学成分或晶体结构分析,提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为了适应不同分析目的的要求,在扫描电子显微镜上相继安装了许多附件,实现了一机多用,成为一种快速、直观、综合性分析仪器。把扫描电子显微镜应用范围扩大到各种显微或微区分析方面,充分显示了扫描电镜的多种性能及广泛的应用前景。 目前扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统(即能谱仪,EDS),主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统 (即结晶学分析系统),主要用于晶体和矿物的研究。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如显微热台和冷台系统,主要用于观察和分析材料在加热和冷冻过程中微观结构上的变化;拉伸台系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到重要作用。