建材秒知道
登录
建材号 > 瓷片 > 正文

贴片陶瓷电容开裂是什么原因

明理的金鱼
幸福的招牌
2023-03-31 14:54:43

贴片陶瓷电容开裂是什么原因?

最佳答案
冷酷的水壶
内向的蜡烛
2025-04-21 07:52:56

贴片陶瓷电容最主要的失效模式断裂。贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素。陶瓷贴片电容器机械断裂后,断裂处的电极绝缘间距将低于击穿电压,会导致两个或多个电极之间的电弧放电而彻底损坏陶瓷贴片电容器。尽可能的减少电路板的弯曲、减小陶瓷贴片电容器在电路板上的应力、减小陶瓷贴片电容器与电路板的热膨胀系数的差异而引起的机械应力。减小陶瓷贴片电容器与电路板的热膨胀系数的差异而引起的机械应力可以通过选择封装尺寸小的电容器来减缓,如铝基电路板应尽可能用1810以下的封装,如果电容量不够可以采用多只并联的方法或采用叠片的方法解决.也可以采用带有引脚的封装形式的陶瓷电容器解决。引起机械裂纹的主要原因有两种。第一种是挤压裂纹,它产生在元件拾放在PCB板上的操作过程。第二种是由于PCB板弯曲或扭曲引起的变形裂纹。挤压裂纹主要是由不正确的拾放机器参数设置引起的,而弯曲裂纹主要由元件焊接上PCB板后板的过度弯曲引起的。

最新回答
外向的秀发
沉静的毛巾
2025-04-21 07:52:56

造成贴片电容断裂及失效的原因:

1、贴片电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生

2、如该颗料的位置在边缘部份或靠近边源部份,在分板时会受到分板的牵引力而导致电容产生裂纹最终而失效.

3、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹.

4、在焊接过程中的热冲击以及焊接完后的基板变形容易导致裂纹产生:电容在进行波峰焊过程中,预热温度,时间不足或者焊接温度过高容易导致裂纹产生,

5、在手工补焊过程中.烙铁头直接与电容器陶瓷体直接接触,容量导致裂纹产生。焊接完成后的基板变型(如分板,安装等)也容易导致裂纹产生。

深圳电感厂驰兴科技希望能帮助到你!

怕孤单的秀发
糟糕的大象
2025-04-21 07:52:56
1.贴片电容内部烧毁可能是在板边或者容易受力折弯部分,受力导致内部陶瓷层与电极层错开,会引起不稳定性,此种失效模式在业界称为Bending crack。 此种失效模式下,电容内部发生轻微裂痕,外观无法观察,需要切片或是在100X显微镜下观察可发现;

表现为Capacitance不稳定,用Anglent 4287测试容值发生变化(一般是变小),但IR仍然存在,不会为0,受热或是压力后,不良可能消失,但后续可再现不良,其原因为电容内部电极部分(镍层)断开错位,导致不稳定性短路,导致电极烧毁。

2.此种失效模式在X-RAY下进行观察,也可以做贴片进行分析。

清脆的烤鸡
热心的乌龟
2025-04-21 07:52:56
1、电路频率特性偏差:电容器是电路的重要元件之一,如果贴片电容的误差较大,可能导致电路的频率响应特性产生偏差。

2、电路稳定性差:电容器的电容值是电路中的一个重要参量,如果误差较大,则可能导致电路在稳态下的工作状态偏离设计要求,从而影响电路的稳定性。

3、设计不准确:在电路设计时,通常需要考虑贴片电容的精度问题,如果误差较大,则可能导致整个电路的设计不准确。

聪慧的皮带
虚心的冬天
2025-04-21 07:52:56
近日,我们的工程在新询盘过程中,有顾客问了一个问题,高压电容上机使用后有拉弧击穿产生

为此我们瓷谷电子的工程为大家做了一个分析,希望可以帮助到遇到同样问题的你,欢迎大家前来交流,探讨结果

经调查,此高压电容脚距为3.0㎜,客人要求测试电压为2000VAC

脚距即安全距离,电气间隙

在这里,瓷谷工程来告诉大家,什么叫拉弧,什么叫拉弧击穿,电容器在什么情况下会有拉弧产生

拉弧,是指电压击穿空气时候的一种放电现象!在电气中,当两个导体间的电压击穿空气层形成电弧,当电弧形成后空气即产生大量的电子,导电性能迅速提高,即使两导体间的距离继续增大仍不能使电弧熄灭,这现象就是拉弧

拉弧击穿,电压超过空气的耐受力使空气电离变成导体也就是产生电弧,电弧一般会绕过绝缘体沿着绝缘体的表面产生,因而会对绝缘体产生损坏

如电弧的高温会使绝缘体融化或碎裂

收到客户寄来的产品,按客户指示,进行三种模式测试分析:1.芯对芯2.芯对壳3.壳对壳

产生不良最多的是壳对壳

凭多年的电容器使用累积经验猜想是安全距离太近造成的

接着看以下分析吧,哈哈!我先把每个产品都测试容量,发现容量是没问题的

然后再拆分客供品

测电压,电压是逐步递进式测试的,由低向高开始

当电压达到2000VAC时,电火花磁磁声产生了

白色的光晕出现了

就是所谓的拉弧

仔细观察,不难发现,产生拉弧的两个端点在哪里

结论:客人所说的高压陶瓷电容耐压不良,其实是拉弧造成的误判

最后有拆下电容器测试,电气性能符合标准

拉弧并非电容耐压不良

但是拉弧会影响使用,影响判定

这个主要是焊点与金属壳之间因距离太近造成拉弧的

不是电容耐压不良引起的

后来,瓷谷电子工程以给到客人建议,在PCB板的焊点上,特别是圆头焊点,点加绝缘胶,增加绝缘性,防止焊点与金属壳之间拉弧

瓷谷30年专注安规陶瓷电容研发生产与销售

科技发展离不开元器件,为了保护核心器件不受到损坏,瓷谷电子给您放心的选择,为产品的安全提供强而有力的保障!

缓慢的店员
沉静的摩托
2025-04-21 07:52:56
分析陶瓷电容器,可能会出现以下的失效形式:

1.潮湿对电参数恶化的影响

空气中湿度过高时,水膜凝聚在电容器外壳表面,可使电容器的表面绝缘电阻下降。此外,对于半密封结构电容器来说,水分还可渗透到电容器介质内部,使电容器介质的绝缘电阻绝缘能力下降。因此,高温、高湿环境对电容器参数恶化的影响极为显著。经烘干去湿后电容器的电性能可获改善,但是水分子电解的后果是无法根除的。例如,电容器的工作于高温条件下,水分子在电场作用下电解为氢离子(H+)和氢氧根离子(OH-),引线根部产生电化学腐蚀。即使烘干去湿,也不可能使引线复原。

2.银离子迁移的后果

无机介质电容器多半采用银电极,半密封电容器在高温条件下工作时,渗入电容器内部的水分子产生电解。在阳极产生氧化反应,银离子与氢氧根离子结合生产氢氧化银;在阴极产生还原反应,氢氧化银与氢离子反应生成银和水。由于电极反应,阳极的银离子不断向阴极还原成不连续金属银粒,靠水膜连接成树状向阳极延伸。银离子迁移不仅发生在无机介质表面,还能扩散到无机介质内部,引起漏电流增大,严重时可使用两个银电极之间完全短路,导致电容器击穿。

3.高温条件下陶瓷电容器击穿机理

半密封陶瓷电容器在高湿度环境条件下工作时,发生击穿失效是比较普遍的严重问题。所发生的击穿现象大约可以分为介质击穿和表面极间飞弧击穿两类。介质击穿按发生时间的早晚又可分为早期击穿与老化击穿两种,早期击穿暴露了电容介质材料与生产工艺方面存在的缺陷,这些缺陷导致陶瓷介质介电强度显著降低,以至于在高湿度环境的电场作用下,电容器在耐压试验过程中或工作初期,就产生电击穿。老化击穿大多属于电化学击穿范畴。由于陶瓷电容器银的迁移,陶瓷电容器的电解老化击穿已成为相当普遍的问题。银迁移形成的导电树枝状物,使漏电流局部增大,可引起热击穿,使电容器断裂或烧毁。热击穿现象多发生在管形或圆片形的小型瓷介质电容器中,因为击穿时局部发热严重,较薄的管壁或较小的瓷体容易烧毁或断裂。

4.电极材料的改进

陶瓷电容器一直使用银电极。银离子迁移和由此而引起含钛陶瓷介质的加速老化是导致陶瓷电容器失效的主要原因。有的厂家生产陶瓷电容器已不用银电极,而改用镍电极,在陶瓷基片上采用化学镀镍工艺。由于镍的化学稳定性比银好,电迁移率低,提高了陶瓷电容器的性能和可靠性。

又如,以银做电极的独石低频瓷介质电容器,由于银电极和瓷料在900℃下一次烧结时瓷料欠烧不能获得致密的陶瓷介质,存在较大的气孔率;此外银电极常用的助溶剂氧化钡会渗透到瓷体内部,在高温下依靠氧化钡和银之间良好的浸润“互熔”能力,使电极及介质内部出现热扩散现象,即宏观上看到的“瓷吸银”现象。银伴随着氧化钡进入瓷体中后,大大减薄了介质的有效厚度,引起产品绝缘电阻的减少和可靠性的降低。为了提高独石电容器的可靠性,改用银-钯电极代替通常含有氧化钡的电极,并且在材料配方中添加了1%的5#玻璃粉。消除了在高温下一次烧结时金属电极向瓷介质层的热扩散现象,能促使瓷料烧结致密化,使得产品的性能和可靠性有较大提高,与原工艺和介质材料相比较,电容器的可靠性提高了1~2个数量级。

5.叠片陶瓷电容器的断裂

叠片陶瓷电容器最常见的失效是断裂,这是叠片陶瓷电容器自身介质的脆性决定的。由于叠片陶瓷电容器直接焊接在电路板上,直接承受来自电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力。因此,对于叠片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是叠片陶瓷电容器断裂的最主要因素。

6.叠片陶瓷电容器的断裂分析

叠片陶瓷电容器机械断裂后,断裂处的电极绝缘间距将低于击穿电压,会导致两个或多个电极之间的电弧放电而彻底损坏叠片陶瓷电容器。

叠片陶瓷电容器机械断裂的防止方法主要有:尽可能地减少电路板的弯曲,减小陶瓷贴片电容在电路板上的应力,减小叠片陶瓷电容器与电路板的热膨胀系数的差异而引起的机械应力。

如何减小叠片陶瓷电容器在电路板上的应力将在下面另有叙述,这里不再赘述。减小叠片陶瓷电容器与电路板的热膨胀系数的差异而引起的机械应力,可以通过选择封装尺寸小的电容器来减缓,如铝基电路板应尽可能用1810以下的封装,如果电容量不够可以采用多只并联的方法或采用叠片的方法解决,也可以采用带有引脚的封装形式的陶瓷电容器解决。

7.叠片陶瓷电容器电极端头被熔淋

在波峰焊焊接叠片陶瓷电容器时可能会出现电极端头被焊锡熔掉了。其原因主要是波峰焊叠片陶瓷电容器接触高温焊锡的时间过长。现在在市场上的叠片陶瓷电容器分为适用于回流焊工艺的和适用于波峰焊工艺的,如果将适用于回流焊工艺的叠片陶瓷电容器用于波峰焊,很可能发生叠片陶瓷电容器电极端头的熔淋现象。关于不同焊接工艺下叠片陶瓷电容器电极端头可以承受的高温焊锡的时间特性,在后面的叠片陶瓷电容器的适用注意事项中有详尽叙述,这里不在赘述。

消除的办法很简单,就是在使用波峰焊工艺时,尽可能地使用符合波峰焊工艺的叠片陶瓷电容器;或者尽可能不采用波峰焊工艺。

体贴的泥猴桃
落后的乐曲
2025-04-21 07:52:56

您好,多层陶瓷电容具由陶瓷介质、端电极、金属电极三种材料构成,失效样式为金属电极和陶介之间层错,电气表现为受外力和温度冲击时电容时好时坏。陶瓷电容失效的类型和表现主要有三种:1、热击失效2、扭曲破裂失效3、原材失效。

1、陶瓷电容热击失效模式:

热击失效的机理是:在生产多层陶瓷电容时,运用各类兼容材料会导致内部出现张力的不同热膨胀系数及导热率。当温度转变率过大时就容易出现因热击而破裂的现象,这类破裂往往从构造弱及机器构造集成时发生,通常是在接近外露端接和陶瓷端接的界面处、产生机器张力的地方。

2、陶瓷电容扭曲破裂失效

导致的破裂失效:当进行零件的取放尤其是零件取放时,取放的定中爪由于磨损、对位不准确,倾斜等造成的。由定中爪集成起来的压力,会造成较大的压力或切断率,继而呈现破裂点。这些破裂现象通常为可见的表面裂缝,或2至3个电极间的内部破裂;表面破裂通常会沿着强的压力线及陶瓷位移的方向。真空检拾头导致的损坏或破裂﹐通常会在芯片的表面呈现一个圆形或半月形的压痕面积﹐并带有不圆滑的边缘。此外﹐这个半月形或圆形的裂缝直经也和吸头相吻合。另一个由吸头所造成的损环﹐因拉力而造成的破裂﹐裂缝会由组件的一边伸展到另一边﹐这些裂缝可能会蔓延至组件的另一面﹐并且其粗糙的裂痕可能会令电容具的底部破损。

以后制造阶段导致的破裂失效:电路板切割﹑测试﹑背面组件和连接器安装﹑及后面组装时,若焊锡组件受到扭曲或在焊锡经过后把电路板拉直,都有可能造成‘扭曲破裂’这项的损坏。在机器力效果下板材弯曲变形时,陶瓷的活动范畴受端位及焊点限控,破裂就会在陶瓷的端接界面处呈现,这类破裂会从呈现的位置开始,从45°角向端接蔓延开来。

3、陶瓷电容原材失效

1)电极间失效及结合线破裂主要由陶瓷的高空隙,或电介质层与相对电极间存在的空隙引起,使电极间是电介质层裂开,成为潜伏性的漏电危机。

2)燃烧破裂的特性与电极垂直,且通常源自电极边缘或终端。假如显示出破裂是垂直的话,则它们应是由燃烧所引起。

以上就是陶瓷电容器失效的类型和表现,希望能帮到您哦,台湾智旭JEC也有生产陶瓷电容,具有各种国际认证,可以去看看哦。

淡定的可乐
善良的豆芽
2025-04-21 07:52:56
HI,您好,我之前有做MLCC的客服工程师:

据以上的介绍,推测这个电容内部产生了裂痕,两种情况:

1、热冲击裂痕;2、外力裂痕;

某些内部裂痕的产生,刚开始不会对电容的性能造成影响,但一段时间后会因外部湿气的进入导致漏电不良。但以烙铁将失效品加热后,湿气跑出来,电性能又会暂时性的恢复。从你所说的单独剪下来的话电容值会有较大的下降,这可能是由于内部断层引起。

不知你所述的电容是何材质:X7R或Y5V?

产品内部裂痕只能做切片分析方可发现,建议你将电容返回原厂分析。

另外在未找到真因时,建议您不要将已恢复的不良品放行。

饱满的战斗机
孝顺的书本
2025-04-21 07:52:56
造成贴片电容漏电的原因有哪些

陶瓷贴片电容MLCC,正常情况下应是高绝缘的,绝缘值高达1.0E+9欧姆。多种因素会导致MLCC的绝缘下降造成漏电现象。

(1)表面脏污引起的表面绝缘下降,这类漏电电流不十分大,一般是微安级别。热风吹一吹绝缘值会上升。

(2)内部裂纹,有焊接引起的裂纹和MLCC制造不良自带裂纹。这类裂纹引起的漏电电流会不断升高,严重时会引起局部爆炸起火。

爱笑的乌冬面
结实的路人
2025-04-21 07:52:56
贴片电容漏电的原因有哪些

陶瓷贴片电容MLCC,正常情况下应是高绝缘的,绝缘值高达1.0E+9欧姆.多种因素会导致MLCC的绝缘下降造成漏电现象.

1>,表面脏污引起的表面绝缘下降,这类漏电电流不十分大,一般是微安级别.热风吹一吹绝缘值会上升.

2>,内部裂纹,有焊接引起的裂纹和MLCC制造不良自带裂纹.这类裂纹引起的漏电电流会不断升高.

出现了漏电,许多公司的技术人员都无法分析出是否为电容问题(一旦动过烙铁或升温,都会恢复正常,),许多工程师都往往错误的分析为焊锡膏问题,我在第一次遇到也没有分析正确,第二次才准确分析,把样品剖开显微镜观察,确实是电容有问题了。

3>,电容漏电,从可靠性角度说,是属于典型的低应力失效,多层陶瓷电容、继电器、涤纶电容都有这些问题,如果供电不干净导致,比如直流电压异常,即使电容的额定电压是50V、25V的也会漏电,但是在1~10V之间的这种电容最为严重,它在这种直流电压异常的情况下工作一定时间后,就会漏电,而且随时间增长越来越多,越来越严重.