电视机高压部分的瓷片电容为啥容易烧坏
很多时候,厂家为节约成本,制造的元器件质量不过关。这样的问题在同一个批次里面,损坏的几率最大。建议换用耐压相等或者高一倍的代换。电容容量必须一样。记住这个原则,相信机器不会再出现这样的问题。
分析陶瓷电容器,可能会出现以下的失效形式:
1.潮湿对电参数恶化的影响
空气中湿度过高时,水膜凝聚在电容器外壳表面,可使电容器的表面绝缘电阻下降。此外,对于半密封结构电容器来说,水分还可渗透到电容器介质内部,使电容器介质的绝缘电阻绝缘能力下降。因此,高温、高湿环境对电容器参数恶化的影响极为显著。经烘干去湿后电容器的电性能可获改善,但是水分子电解的后果是无法根除的。例如,电容器的工作于高温条件下,水分子在电场作用下电解为氢离子(H+)和氢氧根离子(OH-),引线根部产生电化学腐蚀。即使烘干去湿,也不可能使引线复原。
2.银离子迁移的后果
无机介质电容器多半采用银电极,半密封电容器在高温条件下工作时,渗入电容器内部的水分子产生电解。在阳极产生氧化反应,银离子与氢氧根离子结合生产氢氧化银;在阴极产生还原反应,氢氧化银与氢离子反应生成银和水。由于电极反应,阳极的银离子不断向阴极还原成不连续金属银粒,靠水膜连接成树状向阳极延伸。银离子迁移不仅发生在无机介质表面,还能扩散到无机介质内部,引起漏电流增大,严重时可使用两个银电极之间完全短路,导致电容器击穿。
3.高温条件下陶瓷电容器击穿机理
半密封陶瓷电容器在高湿度环境条件下工作时,发生击穿失效是比较普遍的严重问题。所发生的击穿现象大约可以分为介质击穿和表面极间飞弧击穿两类。介质击穿按发生时间的早晚又可分为早期击穿与老化击穿两种,早期击穿暴露了电容介质材料与生产工艺方面存在的缺陷,这些缺陷导致陶瓷介质介电强度显著降低,以至于在高湿度环境的电场作用下,电容器在耐压试验过程中或工作初期,就产生电击穿。老化击穿大多属于电化学击穿范畴。由于陶瓷电容器银的迁移,陶瓷电容器的电解老化击穿已成为相当普遍的问题。银迁移形成的导电树枝状物,使漏电流局部增大,可引起热击穿,使电容器断裂或烧毁。热击穿现象多发生在管形或圆片形的小型瓷介质电容器中,因为击穿时局部发热严重,较薄的管壁或较小的瓷体容易烧毁或断裂。
4.电极材料的改进
陶瓷电容器一直使用银电极。银离子迁移和由此而引起含钛陶瓷介质的加速老化是导致陶瓷电容器失效的主要原因。有的厂家生产陶瓷电容器已不用银电极,而改用镍电极,在陶瓷基片上采用化学镀镍工艺。由于镍的化学稳定性比银好,电迁移率低,提高了陶瓷电容器的性能和可靠性。
又如,以银做电极的独石低频瓷介质电容器,由于银电极和瓷料在900℃下一次烧结时瓷料欠烧不能获得致密的陶瓷介质,存在较大的气孔率;此外银电极常用的助溶剂氧化钡会渗透到瓷体内部,在高温下依靠氧化钡和银之间良好的浸润“互熔”能力,使电极及介质内部出现热扩散现象,即宏观上看到的“瓷吸银”现象。银伴随着氧化钡进入瓷体中后,大大减薄了介质的有效厚度,引起产品绝缘电阻的减少和可靠性的降低。为了提高独石电容器的可靠性,改用银-钯电极代替通常含有氧化钡的电极,并且在材料配方中添加了1%的5#玻璃粉。消除了在高温下一次烧结时金属电极向瓷介质层的热扩散现象,能促使瓷料烧结致密化,使得产品的性能和可靠性有较大提高,与原工艺和介质材料相比较,电容器的可靠性提高了1~2个数量级。
5.叠片陶瓷电容器的断裂
叠片陶瓷电容器最常见的失效是断裂,这是叠片陶瓷电容器自身介质的脆性决定的。由于叠片陶瓷电容器直接焊接在电路板上,直接承受来自电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力。因此,对于叠片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是叠片陶瓷电容器断裂的最主要因素。
6.叠片陶瓷电容器的断裂分析
叠片陶瓷电容器机械断裂后,断裂处的电极绝缘间距将低于击穿电压,会导致两个或多个电极之间的电弧放电而彻底损坏叠片陶瓷电容器。
叠片陶瓷电容器机械断裂的防止方法主要有:尽可能地减少电路板的弯曲,减小陶瓷贴片电容在电路板上的应力,减小叠片陶瓷电容器与电路板的热膨胀系数的差异而引起的机械应力。
如何减小叠片陶瓷电容器在电路板上的应力将在下面另有叙述,这里不再赘述。减小叠片陶瓷电容器与电路板的热膨胀系数的差异而引起的机械应力,可以通过选择封装尺寸小的电容器来减缓,如铝基电路板应尽可能用1810以下的封装,如果电容量不够可以采用多只并联的方法或采用叠片的方法解决,也可以采用带有引脚的封装形式的陶瓷电容器解决。
7.叠片陶瓷电容器电极端头被熔淋
在波峰焊焊接叠片陶瓷电容器时可能会出现电极端头被焊锡熔掉了。其原因主要是波峰焊叠片陶瓷电容器接触高温焊锡的时间过长。现在在市场上的叠片陶瓷电容器分为适用于回流焊工艺的和适用于波峰焊工艺的,如果将适用于回流焊工艺的叠片陶瓷电容器用于波峰焊,很可能发生叠片陶瓷电容器电极端头的熔淋现象。关于不同焊接工艺下叠片陶瓷电容器电极端头可以承受的高温焊锡的时间特性,在后面的叠片陶瓷电容器的适用注意事项中有详尽叙述,这里不在赘述。
消除的办法很简单,就是在使用波峰焊工艺时,尽可能地使用符合波峰焊工艺的叠片陶瓷电容器;或者尽可能不采用波峰焊工艺。
1、耐压不够过压引起的烧毁;
2、超过最大工作电流引起的烧毁;
3、超过最大工作温度引起的烧毁;
4、频率不匹配过损耗引起的烧毁;
5、电解液干涸导致的电容烧毁。
2、电容器容量降低引起的低效或轻微漏电,其故障现象是电视图像S形扭曲或行不同步现象,对于现在的用IIC总线的电视机出现一些特别的故障现象,如果因影响使同步牌临界状态,伴音大可能影响到电视机的质量,使得伴章随时出现。
3、电容器容量消失引起的失效、完全漏电或爆浆,是电源中电容出现故障后最难判别与维修的故障,因为测量电容器件,用万用表测试一切正常,但将电容安装在电路上后,电容的容量就完全消失。
1、烧毁自愈式低压并联电容器的一般原因是电压过高,所以首先要检查压缩机的工作电压是否过高,特别注意一些可能出现电压过高的时间,比如半夜、午休等。当其他设备不用电时,电压通常过高,容易造成事故的发生
2、压缩机频繁启停,也容易导致自愈式低压并联电容器故障,因为压缩机启停时反压很高,一般可达工作电压的3~5倍,但时间很短。如果电容器反复受到反压脉冲的冲击,也很容易损坏。
由于传统的自愈低压并联电容器技术非常成熟,导致大量小工厂甚至路边小型电器店敢于做自愈低压并联电容器,这是一件非常致命的事情,因为行业技术成熟,不代表生产者技术成熟,不代表生产者不使用劣质元件和材料,特别是大量低价模仿自愈电容器充斥市场,价格看起来很有吸引力,但是一次罚款就够用户受的了。建议大家还是要慎重选择。
首先考虑瓷片电容本身质量问题,未达标生产即次品;
瓷片电容达到寿命极限,即是否已经老化;
如不存在1.2问题,电容爆裂一般跟电压有关,即是否远远超出标称值或者超出最大耐压值。
耐压不够过压引起的烧毁;超过最大工作电流引起的烧毁;超过最大工作温度引起的烧毁;频率不匹配过损耗引起的烧毁;电解液干涸导致的烧毁。
电容是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容从物理学上讲,它是一种静态电荷存储介质,它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。
电容的重要性:汹涌的河水流入到湖泊中,再让它流出来,那就显得平静而柔和了.电容就应该是充当了湖泊的作用吧.让电流更纯净没有杂波。
按照结构分三大类:固定电容器、可变电容器和微调电容器。
很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等。
电容故障常见的有击穿、漏电、断路、容量减小,内部有多个元件串联的高压电容还会出现因部分元件击穿使电容量增大的故障。
测量极间电阻,低压电容用万用表测量,高压电容就要用绝缘摇表测量了,因为电容量的存在,充电的时间可能很长,必须以读数稳定后的电阻值为准。通过极间电阻可以判断出电容击穿、漏电,对容量较大的电容器还可以根据充电的情况判断是否断路。
测量电容量,可以用电容表、交流电桥或电压电流法测量,高压电力电容最好用电压电流法测量。电容量的测量结果与名牌值比较,看是否超出偏差范围。这个测试可以判断出电容器是否断路、容量降低或升高是否在范围之内。电解电容的电容量测试要用专用仪器,但用普通的电容表也可作粗略的判断。
表现为Capacitance不稳定,用Anglent 4287测试容值发生变化(一般是变小),但IR仍然存在,不会为0,受热或是压力后,不良可能消失,但后续可再现不良,其原因为电容内部电极部分(镍层)断开错位,导致不稳定性短路,导致电极烧毁。
2.此种失效模式在X-RAY下进行观察,也可以做贴片进行分析。
除因温度冷热变化产生热应力导致开裂外,对于环氧包封型高压陶瓷电容,无论是留边型还是满银型电容都存在着电极边缘电场集中和陶瓷-环氧的结合界面等比较薄弱的环节
环氧包封的瓷片电容由于环氧树脂固化冷却过程体积收缩,产生的内应力以残余应力的形式保留在包封层中,并作用于陶瓷-环氧界面,劣化界面的粘结
在电场作用下,组成高压瓷片电容瓷体的钙钛矿型钛酸锶铁类陶瓷(SPBT)会发生电机械应力,产生电致应变
当环氧包封层的残余应力较大时,二者联合作用极可能造成包封与陶瓷体之间脱壳,产生气隙,从而降低电压水平
二:介质内空洞:导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染、烧结过程控制不当等
空洞的产生极易导致漏电,而漏电又导致器件内局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加
该过程循环发生,不断恶化,导致其耐压水平降低
三:包封层环氧材料因素:一般包封层厚度越厚,包封层破坏所需的外力越高
在同样电场力和残余应力的作用下,陶瓷基体和环氧界面的脱粘产生气隙较为困难
另外固化温度的影响,随着固化温度的提高,高压瓷片电容的击穿电压会越高,因为高温固化时可以较快并有效地减少残余应力
随着整体模块灌胶后固化的高温持续,当达到或超过陶瓷电容器外包封层环氧树脂的玻璃转化温度,达到了粘流态,陶瓷基体和环氧界面的脱粘产生了气隙,此时的形变就很难恢复,这种气隙会降低陶瓷电容的耐压水平
四:机械应力裂纹:陶瓷体本身属于脆性较高的材料,在产生和流转过程中较大的应力可能造成应力裂纹,导致耐压降低
常见的应力源有:工艺过程电路板流转操作;流转过程中的人、设备、重力等因素;元件接插操作;电路测试;单板分割;电路板安装;电路板定位铆接;螺丝安装等
导致瓷片电容失效结论一:直接原因:陶瓷-环氧界面存在间隙,导致其耐压水平降低
二:间接原因:二次包封模块固化过程中产生了环氧材料应力收缩,致使陶瓷-环氧界面劣化,形成了弱点放电的路径
三:二次包封模块固化后,样品放置时间过短,其内部界面应力未完全释放出来,在陶瓷-环氧界面存在微裂纹,导致耐压水平降低