建材秒知道
登录
建材号 > 生物质能 > 正文

生物质能的主要利用形式包括什么

任性的招牌
舒心的小天鹅
2022-12-21 23:44:08

生物质能的主要利用形式包括什么?

最佳答案
生动的可乐
孤独的石头
2025-04-21 07:49:45

生物质能的主要利用形式包括直接燃烧、热化学转换和生物化学转换等3种途径。

1、直接燃烧

当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%-30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一。生物质的直接燃烧和固化成型技术的研究开发主要着重于专用燃烧设备的设计和生物质成型物的应用。

现已成功开发的成型技术按成型物形状主要分为大三类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制的圆柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。

2、热化学转换

是指在一定的温度和条件下,使生物质气化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。

①生物质气化:生物质气化技术是将固体生物质置于气化炉内加热,同时通入空气、氧气或水蒸气,来产生品位较高的可燃气体。它的特点是气化率可达70%以上,热效率也可达85%。生物质气化生成的可燃气经过处理可用于合成、取暖、发电等不同用途,这对于生物质原料丰富的偏远山区意义十分重大,不仅能改变他们的生活质量,而且也能够提高用能效率,节约能源。

②生物质碳化

生物质颗粒碳化燃料是各种生物质经过干燥、转性、混料、成型、碳化等复杂过程连续生产出来的一种新型燃料,其与煤性质相同,是可供各种燃烧机、生物质锅炉、熔解炉、生物质发电等的高效、可再生、环保生物质燃料,此种燃料在国际认证为零污染燃料。

③生物质热解

通常是指在无氧或低氧环境下,生物质被加热升温引起分子分解产生焦炭、可冷凝液体和气体产物的过程,是生物质能的一种重要利用形式。

3、生物质化学转换

通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭,用生物质制造乙醇和甲醇燃料,包括有机物质-沼气转换和生物质-乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气。乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。生物制氢,生物质通过气化和微生物催化脱氢方法制氢。

最新回答
专一的信封
完美的小土豆
2025-04-21 07:49:45

生物质(biomass)是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。生物质能则是太阳能以化学能形式储存在生物质中的能量形式,它一直是人类赖以生存的重要能源之一,是仅次于煤炭、石油、天然气之后第四大能源,在整个能源系统中占有重要的地位。生物质种类繁多,分别具有不同特点和属性,利用技术复杂、多样,纵观国内外生物质利用技术,均是将其转换为固态、液态和气态燃料加以高效利用,主要途径有:[2] 1、直接燃烧技术包括户用炉灶燃烧技术,锅炉燃烧技术、生物质与煤的混合燃烧技术,以及与之相关的压缩成型和烘焙技术。 2、生物转化技术小型户用沼气池、大中型厌氧消化。 3、热化学转化技术包括生物质气化、干馏、快速热解液化技术。 4、液化技术包括提炼植物油技术、制取乙醇、甲醇等技术 5、有机垃圾能源化处理技术。

冷酷的指甲油
不安的时光
2025-04-21 07:49:45

1.我国的生物质能资源情况

我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源50×108t左右,是我国目前总能耗的4倍。生物质能资源按原料的化学性质分,主要为糖类、淀粉和木质纤维素类。按原料来源分,则主要包括以下几类:(1)农业生产废弃物,主要为作物秸秆。(2)薪柴、枝丫柴和柴草。(3)农林加工废弃物,木屑、谷壳和果壳。(4)人畜粪便和生活有机垃圾等。(5)工业有机废弃物、有机废水和废渣等。(6)能源植物,包括所有可作为能源用途的农作物、林木和水生植物资源等。其中来源最广、储量最大、利用前景最可观的是农业生物质和林业生物质这两大类。

1)农业生物质

农业生物质资源包括农产品加工废弃物和农作物秸秆,如图7.13所示。农产品加工废弃物有花生壳、玉米芯、稻壳和甘蔗渣等;农作物秸秆包括水稻秸秆、小麦秸秆和玉米秸秆等。据统计,我国各地区主要农业生物质的可利用总量约为5.6×108t,排名前三的地区分别是山东、河南、河北,而秸秆类农业生物质资源利用的主要方向为24%用于饲用,15%用于还田,2.3%用于工业,剩余的约60%用于露地燃烧或薪柴。因此,我国的农业生物质资源的应用潜力非常大。

图7.13 农业生物质

2)林业生物质

我国现有森林面积约1.95×108hm2,林业生物质总量超过180×108t,其中可利用的林业生物质资源有以下三类:一类是木本淀粉类资源,如栎类、果实、橡子等;二类是木本油料资源,如油桐、油茶、黄连木、文冠果、麻疯树等;三类是木质燃料资源,如灌木林、薪炭林、林业“三剩物”等。而且,我国还有近4000×104hm2的宜林荒山、荒地可用于种植能源林,还有近600×104hm2疏林地和5000×104hm2郁闭度(指森林中乔木树冠遮蔽地面的程度)低于0.4的低产林地可用于改造。

目前世界上已有20多个国家在种植“柴油树”。我国河北省武安市马家庄乡连绵起伏的青山上,满山遍野生长着枝繁叶茂的黄连木树,这种树木的果实可以提炼柴油,当地群众将它称为“柴油树”。现在武安市共有这样的“柴油树”10万亩,年提炼柴油产量可达1000×104kg。据介绍,到2012年,武安市计划将“柴油树”发展到20万亩,年产柴油量达到2000×104kg。

2.生物质能资源的利用

主要应用在生物乙醇、生物柴油、生物质固体成型燃料和生物质能发电行业。

1)生物乙醇的应用

生物乙醇是指通过微生物的发酵将各种生物质转化为燃料酒精。它可以单独或与汽油混配制成乙醇汽油作为汽车燃料。我国生产生物乙醇的原料有甘蔗、甜高粱、木薯等高能品种,并建立了年产能力达5000t的甜高粱茎秆生产乙醇的工业示范装置。因传统粮食生产乙醇价格昂贵,为降低生产成本,我国已转向对微生物混合发酵法的研发。国家发展和改革委员会称,到2020年,我国15%生物质燃料将应用在汽车、轮船等行业。

2)生物柴油的应用

可从动植物油,如大豆、油菜、动物油脂以及餐饮垃圾中提炼生物柴油,因其环保性、润滑性、安全性能良好,可与石化柴油混合作为燃料。2005年6月,我国使用自主研发的生物酶法生产生物柴油,技术指标达到欧美生物柴油标准,标志着我国生物柴油研究取得了突破性进展。2010年生物柴油产能达300×104t/年,主要用于交通运输行业。我国提出了在2020年,生物柴油产能达200×104t的目标,已在海南建立了6×104t/年装置,产量居我国首位。

3)生物质固体成型燃料的应用

生物质固体成型燃料是将城市垃圾或农林废弃物,通过外力作用,压缩成型来增加其密度的可燃物质,具有高效、清洁、无污染等优点。图7.14为生物质捆装压缩示意图。我国的生物质成型燃料生产设备有螺旋挤压式、活塞冲压式、模辊碾压式,燃料形状主要有块状、棒状、颗粒状三种。北京奥科瑞丰公司生物质固体成型燃料年产量为60×104t,居全国首位,主要应用在直接燃烧取暖与工业锅炉等方面。

图7.14 生物质捆装压缩

4)生物质能发电的应用

生物质能发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。为推动生物质能发电技术的发展,2003年以来,国家先后核准批复了河北晋州、山东单县和江苏如东三个秸秆发电示范项目,颁布了《中华人民共和国可再生能源法》,并实施了生物质能发电优惠上网电价等有关配套政策,从而使生物质能发电,特别是秸秆发电迅速发展。

2008年,蒙牛建成全球最大的生物质能沼气发电厂,得到联合国开发计划署环保基金的大力支持。图7.15为蒙牛生物质能沼气发电厂。

图7.15 蒙牛的全球最大生物质能沼气发电厂

3.生物质能开发利用的主要技术

生物质能开发利用在目前阶段的主要技术有三大类:物理转化、化学转化和生物转化。涉及压缩成型、气化、液化、热解、发酵、水解等具体技术,具体情况如图7.16所示。

1)物理转化

生物质的物理转化是将农林废弃物,如秸秆、锯屑、稻壳、蔗渣等,干燥后在一定压力的作用下,压制成棒状、粒状、块状的成型燃料或饲料。农林废弃物主要由纤维素、半纤维素和木质素构成,生物质压缩成型主要是靠木质素的胶结作用。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,是高分子物质,在植物中含量约为15%~30%。当温度达到70~100℃时,木质素开始软化并具有一定的黏度,当温度达到200~300℃时,木质素呈熔融状态,黏度变高,此时施加一定压力就能使木质素与纤维素黏结,使植物体积大量减少,密度显著增加,取消外力后,由于非弹性的纤维分子间的相互缠绕,其仍能保持给定形状,冷却后强度进一步增加,大大降低农林废弃物的体积,便于运输和储存。

图7.16 生物质能开发利用的主要技术

2)化学转化

生物质的化学转化涉及气化、液化和热解等三个方面。

(1)气化:

生物质气化是指在一定的温度条件下,借助氧气或水蒸气的作用,使高聚合的生物质发生热解、氧化、还原等反应,最终转化为CO,H2和低分子烃类等可燃气体的过程。在我国,应用生物质气化技术最广的领域是生物质气化发电(BGPG)。生物质气化发电的成本约为0.2~0.3元/(kW·h),已经接近或优于常规发电,其单位投资约为3500~4000元/kW,仅为煤电的60%~70%,具备进入市场竞争的条件,发展前景非常广阔。

(2)液化:

生物质液化技术是指在高温高压的条件下,进行生物质热化学转化的过程。通过液化,可将生物质转化成高热值的液体产物,即将固态的大分子有机聚合物转化成液态的小分子有机物,生物柴油就是利用生物质液化技术生产出的可再生燃料。油料作物如大豆、油菜、棕榈等在酸性或碱性催化剂和高温的作用下发生酯交换反应,生产相应脂肪酸甲酯或乙酯,再经过洗涤干燥后得到生物柴油。与传统的石化能源相比,其硫和芳烃含量低,十六烷值高,闪点高,具有良好的润滑性,可添加到化石柴油中。

(3)热解:

生物质热解是指利用热能将生物质的大分子打断,从而转化为含碳原子数目较少的低分子化合物的过程,即生物质在完全缺氧条件下,经加热或不完全燃烧后,最终转化成高能量密度的气体、液体和固体产物的过程,而木炭就是利用生物质热解技术生产出的重要产物。木炭产品包括白炭、黑炭、活性炭、机制炭四大类,其中应用范围最广的是活性炭。活性炭是具有发达孔隙结构、强吸附力、比表面积巨大等一系列优点的木炭。在我国,活性炭广泛应用于葡萄糖、味精和医药等产业的生产。

3)生物转化

生物转化技术是指依靠微生物发酵或者酶法水解作用,对生物质进行生物转化,生产出乙醇、氢、甲烷等液体或气体燃料的技术。生物转化的生物质原料包括淀粉和木质纤维素两大类。玉米、木薯、小麦等淀粉类粮食作物是生物转化的主体,但是以农作物为原料转化的产品成本较高,且易受土地和人口的因素限制,产量无法大幅度增加。因此以廉价的农作物废料等木质纤维素为原料的生物转化技术才是解决能源危机的有效途径。然而,木质纤维素的结构和组分与淀粉类原料有很大的不同,解决高效、低成本降解木质纤维素原料的问题是木质纤维素转化产物取代化石燃料的根本途径。

内向的音响
顺心的花生
2025-04-21 07:49:45
1、高校直接燃烧技术和设备;

2、薪材集约化综合开发利用;

3、生物质能的液化、气化等新技术开发利用;

4、城市生活垃圾的开发利用;

5、能源植物的开发。

扩展阅读:

生物质能是自然界中有生命的植物提供的能量。这些植物以生物质作为媒介储存太阳能。属再生能源。据计算,生物质储存的能量为270亿千瓦,比目前世界能源消费总量大2倍。人类历史上最早使用的能源是生物质能。19世纪后半期以前,人类利用的能源以薪柴为主。当前较为有效地利用生物质能的方式有: (1) 制取沼气。主要是利用城乡有机垃圾、秸杆、水、人畜粪便,通过厌氧消化产生可燃气体甲烷,供生活、生产之用。(2) 利用生物质制取酒精。当前的世界能源结构中,生物质能所占比重微乎其微。

潇洒的音响
辛勤的奇迹
2025-04-21 07:49:45

生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到21世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。

目前人类对生物质能的利用,包括直接用做燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。

据估计,每年地球上仅通过光合作用生成的生物质总量就达1440亿~1800亿吨(干重),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。

贤惠的嚓茶
整齐的香水
2025-04-21 07:49:45
利用现代技术,将生物质转化为能量可以通过直接燃烧的方法,也可用生化学和热化学法转化成气体、液体和固体燃烧,例如,木材、草类、农作物等。利用生物质能可进行乙醇、甲醇、甲烷、植物油、汽油、氢等的工业生产。目前使用的转换技术主要是生物质厌氧消化生产沼气;生产质发酵制造酒精;生物质热分解气化等。

生物质能的转换技术具体说,大致可分为以下三类:直接燃烧;生物转换技术;化学转换技术。此外,生物质还可通过多种煤气发生炉转化为可燃煤气。从长远看,绿色能源的开发利用,必将是跨世纪的大趋势,而且可以预见,21世纪生物质能技术的发展,必将取得令人鼓舞的进步。

高大的衬衫
害羞的楼房
2025-04-21 07:49:45

生物质能源化技术主要包括气化、直接燃烧发电、固化成型及液化等。目前,前3种技术已经达到比较成熟的商业化阶段,而生物质的液化还处于研究、开发及示范阶段。从产物来分,生物质液化可分为制取液体燃料(乙醇和生物油等)和制取化学品。由于制取化学品需要较为复杂的产品分离与提纯过程,技术要求高,成本高,目前国内外还处于实验室研究阶段。高温燃烧气将生物质快速加热分解,反应温度600℃。

生物质生产燃料乙醇的原料主要有剩余粮食、能源作物和农作物秸秆等。利用粮食等淀粉质原料生产乙醇是工艺很成熟的传统技术。用粮食生产燃料乙醇虽然成本高,价格上对石油燃料没有竞争力,但有时粮食连年增收,会囤积大量陈化粮。燃料乙醇可按一定比例加到汽油中作为汽车燃料。国内外燃料乙醇的应用证明,它能够使发动机处于良好的技术状态,改善不良的排放,有明显的环境效益。然而我国剩余粮食即使按大丰收时的3000万吨全部转化为乙醇来算,可生产1000万吨乙醇,也只有2000年原油缺口的1/10;而且随着中国人口的持续增长,粮食很难出现大量剩余。因此,陈化粮是一种不可靠的能源。

炙热的大树
精明的斑马
2025-04-21 07:49:45
世界上生物质能源的开发利用技术,长期以来主要是采用直接燃烧,尽管经过不断的技术改造,利用效率仍很低。为了提高效率、方便运输、贮存如多功能使用生物质能源,减少直接燃烧造成的环境污染,近几十年来,不少国家,尤其是经济发达国家,大力研究、开发利用生物质转型优化的能源技术,也就是将低品位的生物质能源转变成液体、气体、固化、电力等形式的优质新能源的技术以及高效节能技术,并开发种植“石油”植物,增加生物质能源的资源储备。

一、生物质热解综合技术

该项技术是生物质在反应器中完全缺氧或只提供有限氧和不加催化剂条件下,高温分解为生物炭、生物油和可燃气的热化学反应过程。可热解的生物质非常广泛,农业、林业和加工时废弃的有机物,都可以作为热解的原料。生物质热解后,其能量的80%-90%转化为较高品位的燃料,有很高的商业价值。农业、林业废弃生物质热解产生的固体和液体燃料燃烧时不冒黑烟,废气中含硫量低,燃烧残余物很少,减少了对环境的污染。分选后的城市垃圾和废水处理生成的污泥经热解后,体积大为缩小,臭味、化学污染和病原菌被除去在消除公害的同时,获得了能源。

热裂解工艺有以下3种类型。

1、慢速热解(烧炭法):主要用于烧木炭业。将木材放在种型式的窑内,在隔绝空气的情况下,加热烧成木炭。一个操作期一般要几天,可得到原料重量30%-35%的木炭,烧木炭法也称木材干馏或碳化。低温干馏的加热温度为50 0-580℃,中温干馏温度为660-750℃,高温干馏温度为900-1100℃。

2、常规热解:是将生物质原料通过常规热解的装置,一般要经过几个小时的热解,可得到原料重量20%-25%的生物炭、10%-20%的生物油。

3、快速热解:是将磨细的生物质原料在快速热解装置中进行,过程经历的时间很短,只有几秒钟,热解产物中生物油的比率明显提高,一般可以达到原料重量的40%-60%,快速热解过程需要的热量以热解产生的部分气体为热源供应。

另外,国内外正在研究“闪激加热”热解气化技术,加热速率越高,热解所获得的气态和液态的燃料产品率越高。

热解所用原料和工艺不同,所得生物炭、生物油和燃料气3种产品的比率及其热值也有差异。

二、生物质液化技术

该技术是以生物质为原料,制取液体燃料的工艺。将生物质转化为液体燃料使用,是有效利用生物质能的最佳途径。其转换方法可分为热化法、生化法、机械法和化学法。生物质液化的主要产品是醇类和生物柴油。

醇类是含氧的碳氢化合物,其分子式为R-OH,其中R表示烷基。常用是甲醇和乙醇。甲醇可用木质纤维素经蒸馏获得,亦可将生物质气化产物一氧化碳与氢经催化反应合成。生产甲醇的原料比较便宜,但设备投资较大。乙醇可由生物质热解产物乙炔与乙烯合成制取,但能耗太高,采用生物质经糖化发酵制取方法较经济可行。一般情况下,乙醇生产成本的60%以上为原料所占。因此选用廉价原料对降低乙醇成本很重要。制取乙醇的原料主要有两类,一类是本质纤维原料,另一类是含糖丰富的植物原料,也可选用农业废弃物,如高梁秸、玉米秸、制糖废渣等。

乙醇作为燃料使用已有很久的历史,1900年英国就出现了以乙醇为燃料的内燃机。70年代以来的能源危机使乙醇燃料又得到发展,据统计,世界上有上千万辆汽车用汽油混合乙醇为燃料。

生物柴油是动植物油脂加定量的醇,在催化剂作用下经化学反应,生成性质近似柴油的酯化燃料。生物柴油可代替柴油直接用于柴油发动机上,也可与柴油掺混使用。生物质液体燃料的可再生性和低污染性使期成为良好的替代能源,作为动力燃料和发电能源有持久的生命力,但目前仍受到石油市场的左右。

巴西利用甘蔗大规模生产乙醇作汽车燃料,以替代进口石油,节约外汇。僵已建有480多家加工厂,年产乙醇127亿升,乙醇汽车累计量达530多万辆。美国利用玉米、马铃薯等生产乙醇,以1:10的比例渗入汽油作汽车燃料,1993年有39个工厂,年产11亿加仑乙醇,每吨玉米可产40加仑乙醇。

三、生物质气化技术

世界上研究应用生物质气化技术发展较快,主要有热解气化技术和厌氧发酵生产沼气技术等。

1、热解气化技术。国外以不同种类的生物质为原料,大都采用压力燃烧气化技术以驱动燃气轮机,还有发生炉煤气甲烷化,流化床气化炉或固定床气化炉热解气化等技术。美国、日本、加拿大、瑞典等国的气化技术已能大规模生产水煤气。

2、厌氧发酵生产沼气,是有机物在厌氧条件下被微生物分解发酵生成一种可燃性气体——沼气,又称生物气。其主要成分是甲烷,含量占60%左右。每立方米沼气的热值相当于1公斤煤的热量。

沼气是1776年由意大利物理学家A??沃尔塔在沼泽发现的。1781年法国人L?穆拉根据沼气产生的原理,将简易沉淀池改造成世界上第一个沼气发生器。但是,资本主义国家在发展工业化、城市化过程中,走了一条“先污染后治理”的路子,对沼气并未引起重视,直至20世纪七八十年代,才越来越引起世界各国的重视。不论是研究、开发、利用厌氧消化技术和大型沼气工程处理城市、工业污泥和垃圾,既治理了污染,又获得了能源。

四、生物质发电技术

1、生物质发电。对于以生物质资源为原料进行发电,工业发达国家已有成熟的技术设备,并形成一定的生产规模。美国采用这种生物质能转型优化方式有三种技术的支持:一是能源林生产技术,包括种子选型、培育和种植。美国利用退耕或轮作的土地种植能源作物,包括树和草,因为这类土地种树或草只需要很少的化肥、农药和管理费用,有利于改良土壤结构,保护水土资源,改善生态环境。二是有专用的加工设备,包括秸秆打捆机、粉碎机、木材削片、整树粉碎等设备和专用的运输工具等。三是生产设备,主要是燃烧炉、蒸汽发电装置等。而毛里求斯、哥斯达黎加等国则大量使用蔗渣发电。

1998年12月英国首座利用特殊培育的柳树为燃料的发电厂在西约克郡奠基。这座新型发电厂使用的主要燃料是生长速度很快的矮柳。该柳树3-4年便可成材。柳树的种植和采伐将使用轮作方式,采伐后立即种植,保证电厂能获得持续的燃料供应。除了柳树外,电厂还可使用农业和渔业废物作为燃料。

2、垃圾发电。随着城市化和食品、医药等工业的发展,城市垃圾迅速增加,许多城市面临着垃圾围城的困扰,大量垃圾堆放占用土地、污染环境。而卫生掩埋、焚化、就也燃烧、堆肥、填低洼地及任意倾弃,衍生出二次污染,危害生态环境和人们的健忘。随着科学技术进步,现代垃圾中被认定为可回收的成分越来越多,因而发达国家,加强了利用垃圾发电的技术研究、开发与应用。

高贵的苗条
受伤的人生
2025-04-21 07:49:45

生物质能应用技术主要研究化学、新能源、生物质能等方面的基本知识和技能,进行生物质能的开发与利用以及相关设备的安装、调试、运行、维护等。常见的生物质有:落叶、木屑、秸秆、稻壳、生活污水、畜禽粪便、沼气等。

生物质能应用技术专业简介

生物质能应用技术是中国普通高等学校专科专业。

该专业主要培养拥护党的基本路线,适应社会主义市场经济建设需要,德、智、体、美全面发展,服务于新能源产业,具备较系统的生物质能专业的基本理论、基本知识及基本技能,能在新能源技术、生物质能技术与装备领域从事设计与制造、装备开发与集成、经营与管理等方面工作,具有创新精神、实践能力和创业精神的应用型工程技术人才。

课程体系:《电工电子技术》、《机械制图》、《热工基础》、《流体力学基础》、《有机化学》、《能源化学》、《化学工程基础》、《现代生物质能利用技术》、《生物质锅炉燃烧技术》、《热工测试技术》。

就业方向:新能源类企业:生物质能开发、生物质能利用。

生物质能应用技术专业好就业吗

该专业就业主要面向电力、生物质能热动等行业,在设计、生产、管理和新技术研究、新产品开发岗位群,从事电力工程技术,电力、热力生产和供应,农村能源利用,石油炼制生产,专用机电设备修理等工作。

生物质能发电作为新型能源已经受到了广泛的重视,在我国也成为了未来的主要能源发展方向之一。