可再生能源利用率如何计算
不同的可再生能源的利用率有不同的计算方法,如生物质能发电(秸秆发电),它的原料是秸秆,其利用率就是秸秆电厂最终获得的电力输出和所需要的总的秸秆本身的热量之比,一般的秸秆电厂的发电效率为30%,秸秆电厂的可再生能源的利用率就是秸秆电厂的效率。
对于光伏发电而言,我们提出了几个可再生能源利用率的概念,一是它的能量回收期,即太阳能光伏产品的生产是要消耗能量的,但是在产品形成发电系统是它可以将太阳能转换成电能,目前一般的晶硅电池的能量回收期视使用地区不同有不同,在江苏地区,回收期约为2~3年。二是光伏发电系统的发电效率,这是对光伏电站而言的,它的定义是系统发出的电量和光伏组件提供的额定功率下发出的电量之比,一般目前的光伏电站的效率可以达到70~80%左右,如果考虑到太阳能提供的功率,则这个效率只有约0.12左右。
对于太阳能热利用而言,具体到太阳能热水器,其对太阳能的利用率可以达到50~60%左右,这是因为太阳能热利用的技术解决要成熟得多;
可再生能源
可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。
大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。
随着能源危机的出现,人们开始发现可再生能源的重要性。
·太阳能
·地热能
·水能
·风能
·生物质能
·潮汐能
所有人类活动的基本能源都来自太阳,透过植物的光合作用而被吸收。
木材
柴是最早使用的能源,透过燃烧成为加热的能源。烧柴在煮食和提供热力很重要,它让人们在寒冷的环境下仍可生存。
动物牵动
传统的农家动物如牛、马和骡除了会运输货物之外,亦可以拉磨、推动一些机械以产生能源。
生物质燃料
此种燃料原为可再生能源,如能产出与消耗平衡则不会增加二氧化碳。但如消耗过量而毁林与耗竭可返还土壤的有机物,就会破坏产耗平衡。用生物质在沼气池中产生沼气供炊事照明用,残渣还是良好的有机肥。用生物质制造乙醇甲醇可用作汽车燃料。
水力
磨坊就是采用水力的好例子。而水力发电更是现代的重要能源,尤其是中国这样满是河流的国家。此外,中国有很长的海岸线,也很适合用来作潮汐发电。
风力
人类已经使用了风力几百年了。
太阳能
太阳直接提供了能源给人类已经很久了,但使用机械来将太阳能转成其他能量形式还是近代的事。
潮汐能
潮汐发电利用潮水涨落,世界已有电站容量16GW。
由此可见,可再生能源在水这方面就至少有水能(日前的水电站就是利用水的落差造成的热能差而发电)、潮汐能等。
根据国际能源署可再生能源工作小组,可再生能源是指“从持续不断地补充的自然过程中得到的能量来源”。可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。
大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。
随着能源危机和高油价的出现,对气候变化忧虑,还有不断增加的政府支持,都在推动增加可再生能源的立法,激励和商业化。新的政府支出,法规和政策,协助业界在抵御全球金融危机中的表现中优于其他许多行业。过去的研究认为,到2050年,可再生能源可以满足全世界能源需求的40%。如果可再生能源技术所得到的政府关注和财政支持能够达到核能在1970年代和1980年代曾经得到的支持,那么风能和太阳能的成本将分别在2020—2025年和2030年与传统发电技术的成本持平。但到了2014年,此项研究已经过时,因为太阳能及风能的降价速度超乎预期,在许多市场都已经不需要补贴。
一次能源可以进一步分为再生能源和非再生能源两大类型。再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。
可再生能源在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
扩展资料:
人类使用再生能源的原因主要有以下几点:
1、科技的进步让此类能源更加“好用”;
2、化石能源是有限的,不仅其价格会日渐增涨,而且终会有枯竭的时候;
3、某些再生能源(如风能、水力、太阳能)不会排放温室气体(如二氧化碳),因此不会增加温室效应的风险;
4、为了增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求。
在19世纪中叶煤炭发展之前,所有使用的能源都是可再生能源。除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。
像生物能和煤炭、石油、天然气等化石能源,主要通过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。
参考资料来源:百度百科——可再生能源
1、能量
(1)物体能够,表示这个物体具有能量,简称能。 (2)单位:焦耳(J)
2、动能
(1)定义:物体由于 而具有的能,叫做功能。
(2)影响动能大小的因素:①物体的;②物体运动的。物体的质量越大,运动速度越大,物体具有的动能就 。
(3)单位:。
3、重力势能
(1)定义:物体由于 而具有的能,叫做重力势能。
(2)影响重力势能大小的因素:①物体的;②物体被举高的 。物体的质量越大,被举得越高,具有的重力势能就 。
(3)单位:
4、弹性势能
(1)定义:物体由于发生 而具有的能,叫做弹性势能。
(2)单位:。
(3)影响弹性势能大小的因素:①物体发生弹性形变的 。物体的弹性形变 越大,具有的弹性势能就越大。
二十七、机械能及其转化
1、机械能
(1)定义: 和 统称为机械能。 (2)单位: 。
(3)影响机械能大小的因素:①动能的大小;②重力势能的大小;③弹性势能的大小。
2、动能和势能的转化
(1)在一定的条件下,动能和势能可以互相。
(2)在分析动能和势能转化的实例时,首先要明确研究对象是在哪一个过程中,再分析物体质量、运动速度、高度、弹性形变程度的变化情况,从而确定能的变化和转化情况。
二十八、分子热运动
1、分子运动理论的基本内容:物质是由组成的;分子不停地做 ;分子间存在相互作用的 和 。
2、扩散现象:不同物质在相互接触时,彼此进入对方的现象叫扩散。气体、液体、固体均能发生扩散现象。扩散的快慢与有关。扩散现象表明:一切物质的分子都在 ,并且间接证明了分子间存在 。
(3)分子间的相互作用力既有 又有 ,引力和斥力是 存在的。当两分子间的距离等于10-10米时,分子间引力和斥力相等,合力为零,叫做平衡位置;当两分子间的距离小于10-10米时,分子间斥力大于引力,合力表现为斥力;当两分子间的距离大于10-10米时,分子间引力大于斥力,合力表现为引力;当分子间的距离很大(大于分子直径的10倍以上)时,分子间的相互作用力变得十分微弱,可近似认为分子间无相互作用力。
二十九、内能
1、内能
(1)概念:物体内部 的总和,叫物体的内能。
①内能是指物体内部 的总和,不是指少数分子或单个分子所具有的能。
②内能与 有关,但不仅仅与温度有关,从微观角度来说,内能与物体内部分子的热运动和分子间的相互作用力有关。从宏观的角度来说,内能与物体的质量、温度、体积都有关。
③一切物体在任何情况下都具有内能,物体的内能与温度有关,同一个物体,温度 ,它的内能增加,温度 ,内能减少。
(2)影响内能的主要因素:物体的质量、温度、状态及体积等。
(3)热运动:物体内部大量分子的无规则运动叫做热运动。分子无规则运动的速度与 有关,温度越高,分子无规则运动的速度就越 ,物体的温度越低,分子无规则运动的速度就越 。
(4)内能与机械能的区别
①物体的内能的多少与物体的温度、体积、质量和物体状态有关;而机械能与物体的 、速度、高度、形变有关。它们是两种不同形式的能。
②一切物体都具有 能,但有些物体可以说没有机械能,比如静止在地面土的物体。
③内能和机械能可以通过 相互转化。
④内能的单位与机械能的单位是一样的,国际单位制都是焦耳,简称焦。用J表示。
2、改变物体内能的两种方法: 与。
(1)做功:
①对物体做功,物体内能;物体对外做功,物体的内能 。
②做功改变物体的内能实质是内能与其他形式的能 的过程。
(2)热传递:
①热传递的条件:物体之间(或同一物体不同部分)存在。
②物体吸收热量,物体内能;物体放出热量,物体的内能 。
③用热传递的方法改变物体的内能实质是内能从一个物体到另一个物体或从物体的一部分 到另一部分。
3、做功与热传递改变物体的内能是 的。
4、热量
(1)概念:物体通过 的方式所改变的内能叫热量。
(2)热量是一个过程量。热量反映了热传递过程中,内能转移的多少,是一个过程量。所以在热量前面只能用“放出”或“吸收”,绝对不能说某物体含有多少热量,也不能说某物体的热量是多少。
(3)热量的国际单位制单位: (J)。
三十、比热容
1、比热容的概念:单位质量的某种物质温度升高(或者降低) 吸收(或者放出)的热量叫做这种物质的比热容,简称比热。用符号c表示比热容。
2、比热容的单位:在国际单位制中,比热容的单位是,符号是J/(kg•℃)。
3、比热容的物理意义
(1)比热容是通过比较单位质量的某种物质温度升高 时吸收的热量,用来表示各种物质的不同性质。
(2)水的比热容是。它的物理意义是:1千克水温度升高(或降低)1℃,吸收(或放出)的热量是 J。
4、比热容表
(1)比热容是物质的一种特性,各种物质都有自己的比热容。
(2)从比热表中还可以看出,各物质中,水的比热容最大。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响,很大。在受太阳照射条件相同时,白天沿海地区比内陆地区温度升高的 ,夜晚沿海地区温度降低也 。所以一天之中,沿海地区温度变化 ,内陆地区温度变化。在一年之中,夏季内陆比沿海炎 ,冬季内陆比沿海寒 。
(3)水比热容大的特点,在生产、生活中也经常利用。如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的 来冷却。冬季也常用 取暖。
5、说明
(1)比热容是物质的特性之一,所以某种物质的比热不会因为物质吸收或放出热量的多少而改变,也不会因为质量的多少或温度变化的多少而改变。
(2)同种物质在同一状态下,比热是一个不变的定值。
(3)物质的状态改变了,比热容 。如水变成冰。
(4)不同物质的比热容一般 。
6、热量的计算:Q= 。式中,Δt叫做温度的变化量。它等于热传递过程中末温度与初温度之差。
注意:①物体温度升高到(或降低到)与温度升高了(或降低了)的意义是不相同的。比如:水温度从lO℃升高到30℃,温度的变化量是Δt= ,物体温度升高了 ℃,温度的变化量Δt =℃。②热量Q不能理解为物体在末温度时的热量与初温度时的热量之差。因为计算物体在某一温度下所具有的热量是没有意义的。正确的理解是热量Q是末温度时的物体的内能与初温度时物体的内能之 。
三十一、热机
1、内燃机及其工作原理:将燃料的 能通过燃烧转化为 能,又通过做功,把能转化为 能。按燃烧燃料的不同,内燃机可分为 、柴油机等。
(1)汽油机一个工作循环为四个冲程即冲程、 冲程、 冲程、 冲程。
(2)一个工作循环中只对外做次功,曲轴转周,飞轮转圈,活塞往返次。
(3)压缩冲程是对气体压缩做功,气体内能 ,这时机械能转化为能。
(4)做功冲程是气体对外做功,内能 ,这时内能转化为 能。
(5)汽油机和柴油机工作的四个冲程中,只有 冲程是燃气对活塞做功,其它三个冲程要靠飞轮的惯性完成。
(6)判断汽油机和柴油机工作属哪个冲程应抓住两点:一是气阀门的开与关;二是活塞的运动方向。
冲程的名称 气门开、关情况 活塞的运动方向 能量的转化情况
吸气冲程 打开 向下运动
压缩冲程 两个气门都 机械能转化成
做功冲程 两个气门都 内能转化成
排气冲程 )打开 向上运动
2、燃料的热值
(1)燃料燃烧过程中的能量转化:燃料燃烧是一种化学反应,燃烧过程中,储存在燃料中的化学能被释放,物体的 能转化为周围物体的 能。
(2)燃料的热值
①定义: ,叫做这种燃料的热值。用符号“q”表示。
②热值的单位,读作焦耳每千克。还要注意,气体燃料有时使用J/m3,读作焦耳每立方米。
③热值是为了表示相同质量的不同燃料在燃烧时放出热量不同而引人的物理量。它反映了燃料通过燃烧放出热量本领大小不同的燃烧特性。不同燃料的热值一般是 的,同种燃料的热值是一定的,它与燃料的质量、体积、放出热量多少无关。
(3)在学习热值的概念时,应注意以下几点:
①“完全燃烧”是指燃料全部燃烧变成另一种物质。
②强调所取燃料的质量为“lkg”,要比较不同燃料燃烧本领的不同,就必须在燃烧质量和燃烧程度完全 的条件下进行比较。
③“某种燃料”强调了热值是针对燃料的特性与燃料的种类有关。
④燃料燃烧放出的热量的计算:一定质量m的燃料完全燃烧,所放出的热量为:Q= ,式中,q表示燃料的热值,单位是J/kg; m表示燃料的质量,单位是kg;Q表示燃料燃烧放出的热量,单位是J。
○5若燃料是气体燃料,一定体积V的燃料完全燃烧,所放出的热量为:Q=qV。式中,q表示燃料的热值,单位是J/m3;V表示燃料的体积,单位是m3;Q表示燃料燃烧放出的热量,单位是J。
3、热机效率
(1)热机的能量流图:如右图所示是热机的能量流图:由图可见,真正能转变为对外做的有用功的能量只是燃料燃烧时所释放能量的一部分。
(2)定义:热机转变为的能量与燃料完全燃烧所释放的能量的比值,称为热机效率。
(3)公式:η=E有/Q放。式中,E有为做有用功的能量;Q总为燃料完全燃烧释放的能量。
(4)提高热机效率的主要途径
①改善燃烧环境,使燃料尽可能 燃烧,提高燃料的燃烧效率。
②尽量减小各种热散失。
③减小各部件间的以减小因克服摩擦做功而消耗的能量。
④充分利用废气带走的能量,从而提高燃料的利用率。
三十二、能量的转化与守恒
1、能量的转化与守恒
(1)能量及其存在的形式:如果一个物体能对别的物体做功,我们就说这个物体具有能。自然界有多种形式的能量,如 能、内能、 能、电能、化学能、 能等。
(2)能量的转移与转化:能量可以从一个物体到另一个物体,如发生碰撞或热传递时;也可以从一种形式 为另一种形式,如太阳能电池、发电机等。
(3)能量守恒定律:能量既不会凭空消灭,也不会,它只会从一种形式转化为其他形式,或者从,而在转化和转移的过程中,能的 。
2、能量守恒定律是自然界最重要、最普遍的基本定律。大到天体,小到原子核,也无论是物理学问题还是化学、生物学、地理学、天文学的问题,所有能量转化的过程,都遵从 。
3、“第一类永动机”永远不可能实现,因为它违背了 。
三十三、能源家族 核能
1、能源家族
(1)一次能源和二次能源
①一次能源:可以 能源。如化石能源、风能、太阳能、地热能、核能、生物质能等。
②二次能源:无法从自然界获取,必须通过 才能得到的能源。如电能等。
(2)可再生能源和不可再生能源
①可再生能源:在自然界可以不断再生并有规律地得到补充的能源,叫做可再生能源。如太阳能、 能、 能、海洋能、 能等。
②不可再生能源:经过千百万年形成的、不可能在短期内从自然界得到补充的能源。如煤炭、石油、、核燃料等。
2、核能
(1)原子、原子核:原子由和(带负电)组成,原子核由(不带电)和质子(带正电)组成。
(2)核能:原子核分裂或聚合时释放出的能量。
(3)核 变:用中子轰击较重的原子核,使其裂变为较轻原子核的一种核反应。
(4)核 变:使较轻原子核结合成为较重的原子核的一种核反应。
(5)核能的优点和可能带来的问题
①核能的优点:核能将是继石油、煤和天然气之后的主要能源。利用核能发电不仅可以节省大量的煤、石油等能,而且用料省,运输方便。核电站运行时不会产生二氧化碳、二氧化硫和粉尘等对大气和环境污染的物质,核电是一种比较清洁的能源。
②利用核能可能带来的问题:如果出现核泄漏会造成严重的放射性环境污染。
三十四、太阳能
1、太阳能是巨大的“核能火炉”,因为在太阳内部,氢原子核在超高温下发生 ,会释放出巨大的核能。
2、太阳能是人类能源的宝库,我们所使用的一次性能源主要来源于太阳能。
3、太阳能的利用
(1)直接利用:①将光能转化为 能加以利用,如太阳能热水器;②将光能转化为 能加以利用,如太阳能电池等。
(2)间接利用:储存在化石燃料中的太阳能。
4.利用太阳能的优缺点
(1)优点:清洁、安全、无污染、环保、方便、经济、不受地域限制、取之不尽,用之不竭、节省地球资源等。
(2)缺点:受到天气的限制。
三十五、能源革命 能源与可持续发展
1、能源革命
(1)人类对能源的开发利用有过四次重大的突破:火的使用、 的发明、电能的应用和原子核能的开发。能源技术的每一次突破都导致了生产力的飞跃和人类社会的巨大进步。
(2)能量的转移和转化是具有 性的,能源的大量开发和使用会造成环境污染与生态破坏。
(3)节约能源减小污染的途径:改进开发技术,减少环境污染物,限制过量开发一些污染严重的资源,大量开发一些清洁无污染的可再生能源。
2、能源与可持续发展
(1)常规能源:多年来人类大规模使用的能源,如煤、 、天然气、水能等。
(2)未来理想能源的四大特征:
①足够 ,可以保证长期使用。
②足够 ,可以保证多数人用得起。
③相关的技术必须成熟,可以保证大规模使用。
④足够安全、清沽,可以保证不会严重影响环境。如生物能、太阳能、风能、潮汐能、温差能、地热能、波浪能、废弃物能等都属于未来理想能源
通过天然作用再生更新,从而为人类反复利用的资源叫可再生资源,又称为可更新资源。如植物、微生物、可降解塑料袋、水资源、地热资源和各种自然生物群落、森林、草原、水生生物等。可再生自然资源在现阶段自然界的特定时空条件下,能持续再生更新、繁衍增长、保持或扩大其储量,依靠种源而再生。泛指从自然界获取的,可以再生的非化石能源,主要是指风能、太阳能、水能、地热能和海洋能等自然能源,我国可再生能源资源非常丰富,为经济发展和开发利用的潜力很大,军事资源潜力也很大。
一旦某种物种的种源消失,该资源就不能再生了,从而要求科学合理地利用和保护物种种源,才可能“取之不尽,用之不竭”。土壤属半可再生资源,是因为土壤肥力能通过人工措施和自然过程而不断的更新。
大部分的可再生能源其实都是太阳能的储存和释放。可再生的意思不只是提供十年的能源,而是百年甚至千年的。随着能源危机的出现,我们要意识到可再生能源的重要性,更需要产生保护资源的意识
一般可再生资源是指那些经过使用、消耗、加工、燃烧、废弃等程序后,仍能在一定周期(可预见)内重复形成的、且具有自我更新的、自我复原的特性并且可持续被利用的一类自然资源或非自然资源。与不可再生资源相对应,是在可持续发展中应该加强建设、推广使用的绿色资源。如:土壤、太阳能、风能、水能、植物、动物、微生物、地热、潮汐能、沼气等和各种自然生物群落、森林、湿地、草原、水生生物等
采矿、采油、渔业和林业一般被看作获取自然资源的工业,而农业则不是。自然资源是成为货物的自然财富。自然资源是指自然界中能被人类用于生产和生活的物质和能源的总称。如:水资源、土地资源、矿产资源、森林资源、野生动物资源、气候资源和海洋资源等。
可再生自然资源在现阶段自然界的特定时空条件下,能够持续再生更新、繁衍增长,保持或扩大其储量,依靠种源而再生。可再生能源泛指多种循环使用的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。不仅非可再生资源的数量是有限的,在一定的时间跟空间尺度内,可再生资源的数量也是有限的。也就是说,可再生资源也并不是「取之不尽,用之不竭」的资源,它是一个动态的概念。
可再生资源只有在我们控制了量的情况下,权衡了开采量及该资源的再形成速率的条件下,使我们的开发利用速率小于其才是“取之不尽,用之不竭”的。大部分的可再生能源其实都是太阳能的储存。可再生的意思并非只是可以提供十年的能源,而是百年甚至千年的。
人们要把能源利用方向转向可再生能源的开发利用,这样可以有效地延缓不可再生能源(如煤、石油、天然气等化石燃料)的消耗速度以及资源逐渐匮乏的趋势。“可燃冰”的出现,一定程度上解决人们在生活上的能源危机、至少给人们心里带去了一点安慰。可燃冰是20世纪发现的新能源,其数量可观。此能源无害无污染,颜色外黑内白,我们坚信,随着时代进步,人类的共同努力,将会有越来越多的可再生能源被我们发现和利用。
问题二:风能和水能是可再生资源吗 是可再生能源
还有太阳能 地热能 生叮能 潮汐能 不可再生:煤 石油 天然气 核燃料 氢气
问题三:太阳能 风能 天然气都是可再生能源吗? 除了天然气都是可再生能源。因为天然气是要被压在地底很久才能形成的,你不可能等到新的天然气诞生吧?而太阳无时无刻不在搞核聚变所以是可再生能源,说它不可再生对于现在的人类来说不太好,因为太阳还有50亿年的寿命,你不可能等到它消散或者灭亡吧?风能这简单了,见过饮水鸟吧?水吸收到足够的热时形成水蒸汽,集结的水蒸气(云)结成水时,体积缩小,周围水蒸气前来补充,就形成风,于是就有了风能,因为太阳无时无刻不在给地球的一面放热,所以有很多水被蒸发,散热后又变成了水,所以风能算是可再生能源。
问题四:风能是一种环保型的可再生能源.据勘测,我国利用风力资源至少有2.53×105MW,所以风能是很有开发前途的 (1)1s内吹到风力发电机有效面积上空气的体积V=Sv1这些空气所具有的动能Ek=12ρVv12风力发电机输出的电功率 P=ηEKt=ηρSv312t=2.6×103W(2)设带动传送带的电动机消耗电功率最大时通过它的电流为I,此时电动机输出功率为P输出,皮带传送装置输出的机械功率为P机械.则I=P电mU额=2.0AP输出=P电m-I2R=480W根据题意可知P机械=56P输出=400W(3)设货箱在恒力作用下做匀加速直线运动的位移为sx,上升的高度为hx.根据匀加速运动公式有sx=12v2t=0.50m,根据几何关系解得hx=0.20m货箱在传送带上加速运动时,带动传送带运行的电动机需要消耗较大的电功率,所以在货箱加速过程中电动机如果不超过其允许消耗的最大功率,匀速运行过程中就不会超过其允许消耗的最大电功率设货箱质量为m,货箱被加速的过程中其机械能增加量为E,由于货箱与传送带的摩擦产生的热量为Q.E=Ep+Ek=mghx+12mv22设货箱与传送带之间的摩擦力为f,对于货箱在传送带上被加速的过程,根据动能定理有 fsx-mghx=12mv22.在货箱加速运动过程中,传送带的位移s带=v2t=1.0m,所以货箱与传送带之间的相对位移△s=s带-sx=0.50m,根据功能关系Q=f?△s联立解得Q=mv22+2mghx2sx△s为使电动机工作过程中不超过允许的最大值,应有Ep+Ek+Q小于等于P机械t,即mghx+12mv22+mv22+2mghx2sx△s≤P机械t解得m=2P机械tsx(v22+2ghx)(sx+△s)≤80kg,即货箱质量不得大于80kg答:(1)此风力发电机在风速v1=10m/s时输出的电功率为2.6×103W;(2)皮带传送装置的电动机消耗电功率达到最大值时,皮带传送装置输出的机械功率为400W;(3)货箱的质量不得大于80kg.
问题五:风能是一种清洁能源,按可再生能源和不可再生能源分类,它属于______能源.今后国家将大力发展风力发电, 风能是一种可再生能源,利用风能发电是把风的机械能转化为电能.故本题答案为:可再生,机械能.
问题六:什么是可再生能源? 可再生能源是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。可再生能源主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。中国除了水能的可开发装机容量和年发电量均居世界首位之外,太阳能、风能和生物质能等各种可再生能源资源也都非常丰富。中国太阳能较丰富的区域占国土面积的2/3以上,年辐射量超过6000MJ/�O,每年地表吸收的太阳能大约相当于1.7万亿tce的能量;风能资源量约为32亿kW,初步估算可开发利用的风能资源约10亿kW,按德国、西班牙,丹麦等风电发展迅速的国家的经验进行类比分析,中国可供开发的风能资源量可能超过30亿kW;海洋能资源技术上可利用的资源量估计约为4亿-5亿kW;地热资源的远景储量为1353亿tce,探明储量为31.6亿tce;现有生物质能源包括:秸秆、薪柴、有机垃圾和工业有机废物等,资源总量达7亿tce,通过品种改良和扩大种植,生物能的资源量可以在此水平再翻一番。总之中国可再生能源资源丰富,具有大规模开发的资源条件和技术潜力,可以为未来社会和经济发展提供足够的能源,开发利用可再生能源大有可为。2006年底,中国可再生能源年利用量总计为2亿吨标准煤,(不包括传统方式利用的生物质能),约占中国一次能源消费总量的8%,比2005年上升了0.5个百分点,这为2010年可再生能源占全国一次性能源10%的目标迈出了坚实的一步。随着越来越多的国家采取鼓励可再生能源的政策和措施,可再生能源的生产规模和使用范围正在不断扩大,2007年全球可再生能源发电能力达到了24万兆瓦,比2004年增加了50%。2007年至少有60多个国家制订了促进可持续能源发展的相关政策,欧盟已建立了到2020年实现可持续能源占所有能源20%的目标,而中国也确立了到2020年使可再生能源占总能源的比重达到15%的目标。2007年,全球并网太阳能发电能力增加了52%,风能发电能力增加了28%。全球大约有5000万个家庭使用安放在屋顶的太阳能热水器获取热水,250万个家庭使用太阳能照明,2500万个家庭利用沼气做饭和照明。可再生能源比重的提升传递着“绿色经济”正在兴起的信息,2012年《京都议定书》到期后新的温室气体减排机制将进一步促进绿色经济的全面发展。根据中国中长期能源规划,2020年之前,中国基本上可以依赖常规能源满足国民经济发展和人民生活水平提高的能源需要,到2020年,可再生能源的战略地位将日益突出,届时需要可再生能源提供数亿吨乃至十多亿吨标准煤的能源。因此,中国发展可再生能源的战略目的将是:最大限度地提高能源供给能力,改善能源结构,实现能源多样化,切实保障能源供应的安全。
计算公式为:水能利用率(%)=[水电厂年发电量(千瓦时)*3600]/[水库年来水总量(立方米)*水库设计水头(米)*9.81],按水电厂前3年实际统计的水能利用率均值作为考核值。
水能是一种可再生能源,水能主要用于水力发电。水力发电将水的势能和动能转换成电能。以水力发电的工厂称为水力发电厂,简称水电厂,又称水电站。
水力发电的优点是成本低、可连续再生、无污染。缺点是分布受水文、气候、地貌等自然条件的限制大。容易被地形、气候等多方面的因素所影响,国家还在研究如何更好的利用水能。
扩展资料
水能形成原理:
水的落差在重力作用下形成动能,从河流或水库等高位水源处向低位处引水,利用水的压力或者流速冲击水轮机,使之旋转,从而将水能转化为机械能,然后再由水轮机带动发电机旋转,切割磁力线产生交流电。
—而低处的水通过阳光照射,形成水蒸气,循环到地球各处,从而恢复高位水源的水分布。
水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。
随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。也有部分水能用于灌溉。
参考资料来源:百度百科-水电站水能利用率
参考资料来源:百度百科-水能