建材秒知道
登录
建材号 > 能源科技 > 正文

菌类是可再生能源吗为什么

奋斗的盼望
老迟到的心情
2023-02-15 12:06:45

为什么微生物是能源生产者

最佳答案
缥缈的背包
热心的草丛
2025-04-20 09:26:21

以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。海洋细菌是海洋生态系统中的重要环节。作为分解者它促进了物质循环;在海洋沉积成岩及海底成油成气过程中,都起了重要作用。还有一小部分化能自养菌则是深海生物群落中的生产者。海洋细菌可以污损水工构筑物,在特定条件下其代谢产物如氨及硫化氢也可毒化养殖环境,从而造成养殖业的经济损失。但海洋微生物的颉颃作用可以消灭陆源致病菌,它的巨大分解潜能几乎可以净化各种类型的污染,它还可能提供新抗生素以及其他生物资源,因而随着研究技术的进展,海洋微生物日益受到重视。

【特性】

与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。海洋微生物长期适应复杂的海洋环境而生存,因而有其独具的特性。

嗜盐性 

海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。

嗜冷性

大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。那些能在 0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。

嗜压性 

海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。海洋最深处的静水压力可超过1000大气压。深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。

低营养性 

海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。这种现象说明常规的平板法并不是一种最理想的分离海洋微生物方法。

趋化性与附着生长 

海水中的营养物质虽然稀薄,但海洋环境中各种固体表面或不同性质的界面上吸附积聚着较丰富的营养物。绝大多数海洋细菌都具有运动能力。其中某些细菌还具有沿着某种化合物浓度梯度移动的能力,这一特点称为趋化性。某些专门附着于海洋植物体表而生长的细菌称为植物附生细菌。海洋微生物附着在海洋中生物和非生物固体的表面,形成薄膜,为其他生物的附着造成条件,从而形成特定的附着生物区系。

多形性 

在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中表现尤为普遍。这种特性看来是微生物长期适应复杂海洋环境的产物。

发光性 

在海洋细菌中只有少数几个属表现发光特性。发光细菌通常可从海水或鱼产品上分离到。细菌发光现象对理化因子反应敏感,因此有人试图利用发光细菌为检验水域污染状况的指示菌。

【分布】 

海洋细菌分布广、数量多,在海洋生态系统中起着特殊的作用。海洋中细菌数量分布的规律是:近海区的细菌密度较大洋大,内湾与河口内密度尤大;表层水和水底泥界面处细菌密度较深层水大,一般底泥中较海水中大;不同类型的底质间细菌密度差异悬殊,一般泥土中高于沙土。大洋海水中细菌密度较小,每毫升海水中有时分离不出1个细菌菌落,因此必须采用薄膜过滤法:将一定体积的海水样品用孔径0.2微米的薄膜过滤,使样品中的细菌聚集在薄膜上,再采用直接显微计数法或培养法计数。大洋海水中细菌密度一般为每40毫升几个至几十个。在海洋调查时常发现某一水层中细菌数量剧增,这种微区分布现象主要决定于海水中有机物质的分布状况。一般在赤潮之后往往伴随着细菌数量增长的高峰。有人试图利用微生物分布状况来指示不同水团或温跃层界面处有机物质积聚的特点,进而分析水团来源或转移的规律。

海水中的细菌以革兰氏阴性杆菌占优势,常见的有假单胞菌属等10余个属。相反,海底沉积土中则以革兰氏阳性细菌偏多。芽胞杆菌属是大陆架沉积土中最常见的属。

海洋真菌多集中分布于近岸海域的各种基底上,按其栖住对象可分为寄生于动植物、附着生长于藻类和栖住于木质或其他海洋基底上等类群。某些真菌是热带红树林上的特殊菌群。某些藻类与菌类之间存在着密切的营养供需关系,称为藻菌半共生关系。

大洋海水中酵母菌密度为每升 5~10个。近岸海水中可达每升几百至几千个。海洋酵母菌主要分布于新鲜或腐烂的海洋动植物体上,海洋中的酵母菌多数来源于陆地,只有少数种被认为是海洋种。海洋中酵母菌的数量分布仅次于海洋细菌。

在海洋环境中的作用。海洋堪称为世界上最庞大的恒化器,能承受巨大的冲击(如污染)而仍保持其生命力和生产力;微生物在其中是不可缺少的活跃因素。自人类开发利用海洋以来,竞争性的捕捞和航海活动、大工业兴起带来的污染以及海洋养殖场的无限扩大,使海洋生态系统的动态平衡遭受严重破坏。海洋微生物以其敏感的适应能力和快速的繁殖速度在发生变化的新环境中迅速形成异常环境微生物区系,积极参与氧化还原活动,调整与促进新动态平衡的形成与发展。从暂时或局部的效果来看,其活动结果可能是利与弊兼有,但从长远或全局的效果来看,微生物的活动始终是海洋生态系统发展过程中最积极的一环。

海洋中的微生物多数是分解者,但有一部分是生产者,因而具有双重的重要性。实际上,微生物参与海洋物质分解和转化的全过程。海洋中分解有机物质的代表性菌群是:分解有机含氮化合物者有分解明胶、鱼蛋白、蛋白胨、多肽、氨基酸、含硫蛋白质以及尿素等的微生物;利用碳水化合物类者有主要利用各种糖类、淀粉、纤维素、琼脂、褐藻酸、几丁质以及木质素等的微生物。此外,还有降解烃类化合物以及利用芬香化合物如酚等的微生物。海洋微生物分解有机物质的终极产物如氨、硝酸盐、磷酸盐以及二氧化碳等都直接或间接地为海洋植物提供主要营养。微生物在海洋无机营养再生过程中起着决定性的作用。某些海洋化能自养细菌可通过对氨、亚硝酸盐、甲烷、分子氢和硫化氢的氧化过程取得能量而增殖。在深海热泉的特殊生态系中,某些硫细菌是利用硫化氢作为能源而增殖的生产者。另一些海洋细菌则具有光合作用的能力。不论异养或自养微生物,其自身的增殖都为海洋原生动物、浮游动物以及底栖动物等提供直接的营养源。这在食物链上有助于初级或高层次的生物生产。在深海底部,硫细菌实际上负担了全部初级生产。

在海洋动植物体表或动物消化道内往往形成特异的微生物区系,如弧菌等是海洋动物消化道中常见的细菌,分解几丁质的微生物往往是肉食性海洋动物消化道中微生物区系的成员。某些真菌、酵母和利用各种多糖类的细菌常是某些海藻体上的优势菌群。微生物代谢的中间产物如抗生素、维生素、氨基酸或毒素等是促进或限制某些海洋生物生存与生长的因素。某些浮游生物与微生物之间存在着相互依存的营养关系。如细菌为浮游植物提供维生素等营养物质,浮游植物分泌乙醇酸等物质作为某些细菌的能源与碳源。

由于海洋微生物富变异性,故能参与降解各种海洋污染物或毒物,这有助于海水的自净化和保持海洋生态系统的稳

定。

最新回答
漂亮的小虾米
无奈的书本
2025-04-20 09:26:21

食用菌废弃物中含有丰富的菌体蛋白、多种代谢产物及未被充分利用的营养物质,有机质含量高,是较好的堆肥原料。经堆肥处理形成的菌渣肥料比用秸秆堆沤的肥料有更多的可给态养分和更好的增产效果。

2做育苗基质

把出菇后的废弃物与土壤混合后堆积发酵处理后,用来作为蔬菜、花卉育苗基质,基质的土壤理化性质得到改善,且生产成本低,幼苗生长健壮。菌渣用作蔬菜栽培基质,可使蔬菜幼苗在短期内灌溉清水的情况下正常生长,但采用新鲜的食用菌废弃物直接进行蔬菜育苗,存在发芽率低、生长势弱、苗发黄严重等问题。利用菇渣发酵产物与其它基质混合栽培蔬菜,降低了生产成本,提高了产量和品质。

3做饲料添加剂

在食用菌菌丝体的生长过程中,随着酶解反应的完成,副产品中含有多种禽畜体内不能合成的,一般饲料中又缺乏的必需氨基酸和菌类多糖。因此,栽培食用菌的下脚料又是一种很好的菌糠饲料。

4用作食用菌栽培原料

选择培养料未被杂菌污染的木耳、金针菇、杏鲍菇、白灵菇等栽培后的菌渣,进行剥袋、打碎、建堆发酵及灭菌等处理,用于平菇、草菇、鸡腿菇、双孢蘑菇等草腐菌栽培。

5用作燃料

将出菇后的食用菌废弃物晒干保藏,用于菌种培养基和培养料的灭菌燃料,这已在生产中广泛应用。

近年开发的菌渣木炭机,将菌渣粉碎、烘干、制棒、炭化处理等工艺,在隔绝空气条件下,经高温高压成型、炭化处理后制成的一种废物再生能源。另外,近年开发的“生物质气化炉”,可直接利用菌渣做燃料,提高了热值和气化效率。

6利用菌渣发展沼气

目前一些食用菌产区利用菌渣发展沼气。如河南西峡县是食用菌生产大县,也是沼气试点县,目前已发展沼气5000户,每年有5000吨菌渣投入沼料使用。也可以作为禽畜养殖垫料,禽畜粪污被菌渣垫料中微生物分解,禽畜舍无臭味,垫料发酵后投入沼气池。

7作为生态环境修复材料

菇渣中含有大量的漆酶、多酚氧化酶以及过氧化物酶等多种降解酶类,这类酶不仅可以降解木质素,还能有效地降解萘、菲、吡等多环芳烃类的化合物。将菇渣作为接种剂用于环境污染修复领域的研究报道越来越多。

害羞的水蜜桃
淡定的机器猫
2025-04-20 09:26:21
菌类不能进行光合作用来制造养料,而靠吸收其他生物养分来生存的,属于寄生生活方式,这是消费者的生活方式;靠吸收土壤里的养分来生存的菌类应该是分解者的生活方式.

因此它们不属于生产者.

菌既不是动物也不是植物。

菌(jùn)类是个庞大的家族,它无处不在。现在,已知的菌类大约有10多万种。菌类植物结构简单,没有根、茎、叶等器官,一般不具有叶绿素等色素,大多营异养生活。菌类植物可分为细菌门、粘菌门和真菌门三类彼此并无亲缘关系的生物。其中粘菌是介于动物和真菌之间的生物。它在营养期为裸露的、无细胞壁、多核的原生质团,称变形体(与变形虫相似)。但在繁殖期,它可产生具纤维素细胞壁的孢子,又具真菌的性状。

人们可以食用的大型真菌的总称,具体指大型真菌中,能形成具有胶质或肉质的子实体或浚河组织,并能食用或药用的菌类。

此类族群包括酵母菌、霉、伞菌和霉菌,绝大部分属于担子菌亚门,只有少数属于子曼菌亚门。它们缺乏叶绿素,也没有有机植物根茎叶的构造。它们存在的证据可追溯到距今约四亿两千万年前,但古生物学家认为它们应该出现的更早。

菌类,一大类不含叶绿素、不能进行光合作用、异养的低等类植物。其中包括细菌、粘菌和真菌三个门类。其共同特征是:植物体没有根、茎、叶的分化,不含叶绿素等光合色素(极少数光合细菌除外),不能进行光合作用,腐生生活或寄生生活,即异养生活。生殖器官多为单细胞结构,合子不发育成胚。

菌类的生活环境比较广泛,在水、空气、土壤以至动、植物的身体内,它们均可生存。

忐忑的电源
香蕉含羞草
2025-04-20 09:26:21

细菌对人类的好处是细菌益肠胃

身体大肠内的细菌靠分解小肠内部的废弃物生活。这些东西由于不可消化,人体系统拒绝处理它们。

这些细菌自己装备有一系列的酶和新陈代谢的通道。这样,它们能够继续把遗留的有机化合物进行分解。

它们中的大多数的工作都是分解植物中的碳水化合物。大肠内部大部分的细菌是厌氧性的细菌,意思就是它们在没有氧气的状态下生活。它们不是呼出和呼入氧气,而是通过把大分子的碳水化合物分解成为小的脂肪酸分子和二氧化碳来获得能量。这一过程称为“发酵”。

扩展资料:

细菌对人体的好处:

1、适当接触细菌有利增强免疫力,事实上,人们不可能总是生活在一个完全没有细菌的环境中,与其总是避免打照面,不如让自己的免疫力得到加强,不怕细菌的侵扰。

2、任何细菌或病毒都有两面性,比如疫苗,我们所打的疫苗就是细菌或病毒,这些细菌或病毒进入人体后产生抗体保护身体,使身体不被同种细菌或病毒感染。

也就是打进人体的细菌或病毒提高了人的抵抗能力,这是对人的好处,还有大肠杆菌,有这种细菌,肠粘膜才能有分泌物保持湿润,不被大便擦伤肠内壁,这大肠杆菌也起到保护作用。

细菌对人类的重要性:

1、细胞人类生命活动的基本单位,人本身就是有千万个细胞所组成的,不同的细胞在人体内有着不同的功能,它们既有独立的生命,但又共同为人体这个大的细胞社会所负责.(可类比社会中每个个体人与社会)。

2、细菌在生态系统中充当分解者的职能,它们将许多我们人类无法利用的固化能量再一次分解,如(动物粪便,动植物遗体等),将这里面的碳重新变为大气中二氧化碳,供植物进行光合作用,促进了生态系统中的碳循环。

参考资料来源:百度百科-细菌