建材秒知道
登录
建材号 > 能源科技 > 正文

干热岩是什么能源

强健的小兔子
威武的麦片
2023-02-15 10:50:57

干热岩是什么能源?

最佳答案
长情的小丸子
直率的钢笔
2025-04-20 15:34:44

干热岩是地热能源,它一般在地下数千米的地方,可以用来发电。

干热岩发电的技术可以有效降低温室效应、酸雨对环境造成的影响,而且它的含量较大。除了可以用干热岩发电之外,风力、水里、火力都可发电。干热岩是一种新兴的地热能源,它一般都在地下数千米的地方,且温度都高于两百摄氏度,我国第一次发现大规模的可以利用的干热岩在青海。

干热岩可用于发电,这项技术的推广能有效的降低温室效应、酸雨对环境造成的影响,而且干热岩的含量较大,2019年时在日照、威海发现的干热岩富存区的资源量就等于数百亿吨的标准煤。目前除了可以用干热岩发电之外,我们还可以用风力、水里、火力、核能等自然资源进行发电。

干热岩

干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大, 绝大部分为中生代以来的中酸性侵入岩, 但也可以是中新生代的变质岩, 甚至是厚度巨大的块状沉积岩。

干热岩主要被用来提取其内部的热量, 因此其主要的工业指标是岩体内部的温度。青藏高原在隆升过程中形成了一系列地热资源。从2014年时了解的干热岩地热资源区域分布看,青藏高原南部占中国大陆地区干热岩总资源量的20.5%,资源量巨大且温度最高。

青海地勘人员在共和盆地成功钻获温度高达153℃的干热岩。这是我国首次发现大规模可利用干热岩资源。该资源属清洁能源,可用于地热发电。

最新回答
危机的白云
整齐的钥匙
2025-04-20 15:34:44

干热岩是一种新兴的地热能源。

干热岩也称增强型地热系统,或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大,绝大部分为中生代以来的中酸性侵入岩,但也可以是中新生代的变质岩,甚至是厚度巨大的块状沉积岩。

干热岩主要被用来提取其内部的热量,因此其主要的工业指标是岩体内部的温度。中国首次发现大规模可利用干热岩资源于青海省共和盆地,青藏高原南部约占我国大陆地区干热岩总资源量的1/5。

干热岩的用途

1、发电

目前,人们对干热岩的开发利用,主要是发电。利用干热岩发电技术可大幅降低温室效应和酸雨对环境的影响,且不受季节、气候制约。而且将来利用干热岩发电的成本仅为风力发电的一半,只有太阳能发电的十分之一。

2、供暖

干热岩因其得天独厚的较高温度,一旦成功开采出来,是冬季供暖的良好热源。但因其造价较高,对于面积较小的建筑供暖,高昂的成本是一般人难以承受的。因此,用干热岩技术来进行集中供暖是比较合适的选择。

以上内容参考:百度百科—干热岩

危机的羽毛
多情的故事
2025-04-20 15:34:44
是的.目前已知的能源有:①太阳辐射能及其转换成的能,包括矿物燃料、风力、水力、植物燃料、海洋波浪、海水温差等;②地球本身蕴藏的能量,包括原子能和地热等;③地球与其他天体相互作用所产生的能量,如潮汐能。矿物燃料和植物燃料的燃烧是造成大气污染的主要原因。因此,采用无污染能源,是防止大气污染的重要措施。

无污染能源主要是太阳辐射能、风力、水力、地热、氢燃料、生物能以及海洋波浪、海流、海水温差、潮汐等能源。这些能源都蕴藏着巨大的能量,并逐步被开发利用。太阳每年辐射到地球上的总能量达6.0×1017千瓦小时。太阳能可以转换成热能、电能和化学能。马里共和国于1979年建成迪雷太阳能热电站,装机容量75千瓦。美国、日本、苏联、希腊等国也建有不同类型的太阳能电站。太阳能转化为热能使用较常见,利比亚约有三分之一居民用太阳灶,中国许多地方已采用太阳能供热。

在风力和水力方面,中国在2~3千年前就开始用风力和水力进行粮食加工,现在主要是把它们转换成电力使用。如1979年在浙江省泗礁岛上安装了容量18千瓦的风力发电装置;内蒙古草原上已先后装置了200多台100~250瓦的小型风力发电机组。苏联在1931年就建成了装机容量 100千瓦的风力发电装置。80年代初世界能源结构中,水力占 6%。中国水力资源蕴藏量居世界第一位。据1979年统计,中国已建成大型和小型水电站九万多座,装机容量634万千瓦。

地热利用方面,自意大利于1904年首先利用地热发电以来,中国、美国、菲律宾、苏联、日本、新西兰、墨西哥等国都建造了地热电站。1980年,各国地热电站总功率已达 380万千瓦,美国地热电站总装机容量达86万千瓦,单机容量达11万千瓦。中国至1979年先后建成7 座地热电站,西藏羊八井地热电站单机容量约7000千瓦。干热岩能源是地热能源的一部分,目前正在研究它的利用问题。有的地下热水和蒸汽含有硫化氢等有害物质,但和矿物燃料相比,有害物质较少。

在海洋能源利用方面,海洋蕴藏着巨大的能量,据估计,中国沿海年潮汐能有1.1亿千瓦,可利用的有3100~3500万千瓦。截至1979年底,中国建成 4座较大的潮汐电站,其中浙江省江厦电站装机容量3000千瓦。法国1966年建成一座功率为24万千瓦的潮汐电站。波浪发电装置,目前世界各国已有400多种。海水温差发电装置的容量已达到10万千瓦。

此外,氢是含能量很高的无污染燃料,是由其他能源制造的二次能源。它燃烧时和氧化合成水,不产生污染物。生物能是绿色植物通过光合作用固定的太阳能,可转化为气体或液体燃料,如用甘蔗、木薯、甜高粱生产酒精。

海底天然气水合物作为 21 世纪的重要后续能源,及其对人类生存环境及海底工程设施的灾害影响,正日益引起科学家们和世界各国政府的关注。本世纪六十年代开始的深海钻探计划 (DSDP) 和随后的大洋钻探计划 (ODP) 在世界各大洋与海域有计划地进行了大量的深海钻探和海洋地质地球物理勘查,在多处海底直接或间接地发现了天然气水合物。到目前为止,世界上海底天然气水合物已发现的主要分布区是大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东海岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、冲绳海槽、日本海、四国海槽、日本南海海槽、苏拉威西海和新西兰北部海域等,东太平洋海域的中美洲海槽、加利福尼亚滨外和秘鲁海槽等,印度洋的阿曼海湾,南极的罗斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。

无污染能源中,除水力的利用技术较为成熟外,其他几种能源在开发和利用上还存在着技术上的困难。矿物燃料贮量有限,而且在燃烧时排出大量污染物质,所以,无污染和少污染能源在能源总结构中将占越来越重要的地位。

失眠的康乃馨
明亮的咖啡
2025-04-20 15:34:44

什么是可再生能源?

自然界存在的、可以循环再生的能源。例如太阳能和由太阳能转换而成的水能、风能、海洋波浪能、生物质能等称作可再生能源。

可再生能源是能够转换成人们所需要的电能、热能、机械能等形式的能的资源。可再生能源能源按其来源与生成,分成五大类: 直接或间接来自太阳的能量;以热能形式储藏在地球内部的地热能;各种生物质能;风能;月亮、太阳等天体与地球的相互吸引所引起的潮汐能等。

可再生能源有哪些?

下面列举几种新能源和可再生能源的特点:

太阳能是以电磁辐射形式从太阳向外传播的一种能量。

风能是流动空气具有的一种动能。在地球表面一定的范围(全球,全国或某一地区)内,经过长期测量调查与统计得出的平均风能密度的概况。它是该范围内风能利用的依据。

地热能是一种由地球内部蕴藏的热,通常指地下热水或地下蒸汽以及用人工方法从干热岩体中获得的热水与蒸汽所携带的能量。

生物质能是生物质通过生物转化法、热分解法和气化法转化而成的气态、液态和固态燃料所具有的能量。

潮汐能是一种从海水面昼夜间上涨和降落中获得的能量;波浪能又称海浪能,海水在波动中,水质点以一定的速度运动,故具有动能。水质点的垂直位置相对于它的轨迹中心不断地发生变化,故具有势能。

无限的铃铛
幸福的冬日
2025-04-20 15:34:44

我们居住的地球,很像一个大热水瓶,外凉内热,而且越往里面温度越高。因此,人们把来自地球内部的热能,叫地热能。地热能地球通过火山爆发和温泉等途径,将它内部的热能源源不断地输送到地面。人们所热衷的温泉,就是人类很早开始利用的一种地热能。然而,目前对地热能大规模的开发利用还处于初始阶段,所以说地热还属于一种新能源。

在距地面25~50千米的地球深处,温度为200℃~1000℃;若深度达到距地面6370千米即地心深处时,温度可高达4500℃。

据估算,如果按照当今世界动力消耗的速度,完全只消耗地下热能,那么即使使用4100万年后,地球的温度也只降低1℃。由此可见,在地球内部蕴藏着多么丰富的热能。地球温度分布是很规律的,通常,在地壳最上部的十几千米范围内,地层的深度每增加30米,地层的温度便升高约1℃;在地下15~25千米之间,深度每增加100米,温度上升1.5℃;25千米以下的区域,深度每增加100米,温度只上升0.8℃;以后再深入到一定深度,温度就保持不变了。

地球深层为什么储存着如此多的热能呢?它们是从哪里来的?对于这个问题,目前还处于探索阶段。不过,大多数学者认为,这是由于地球内部放射性物质自然发生蜕变的结果。在核反应的过程中,放出了大量的热能,再加上处于封闭、隔断的地层中,天长日久,经过逐渐的积聚,就形成了现在的地热能。值得指出的是,地热资源是一种可再生的能源,只要不超过地热资源的开发强度,它是能够补充而再生的。

通常,人们将地热资源分为4类:

(一)水热资源。这是储存在地下蓄水层的大量地热资源,包括地热蒸汽和地热水。地热蒸汽容易开发利用,但储量很少,仅占已探明的地热资源总量的0.5%。而地热水的储量较大,约占已探明的地热资源的10%,其温度范围从接近室温到高达390℃。

(二)地压资源。这是处于地层深处沉积岩中的含有甲烷的高盐分热水。由于上部的岩石覆盖层把热能封闭起来,使热水的压力超过水的静压力,温度约为150℃~260℃之间,其储量约是已探明的地热资源总量的20%。

(三)干热岩。这是地层深处温度为150℃~650℃左右的热岩层,它所储存的热能约为已探明的地热资源总量的30%。

(四)熔岩。这是埋藏部位最深的一种完全熔化的热熔岩,其温度高达650℃~1200℃。熔岩储藏的热能比其他几种都多,约占已探明地热资源总量的40%。

到目前为止,对于地热资源的利用主要是水热资源的开发。近年来,一些国家开始进行干热岩的开发研究和试验,开凿人造热泉就是干热岩的具体应用之一。而地压资源和熔岩资源的利用尚处于探索阶段。

我国是世界上开发利用地热资源较早的国家,发展也很快。北京就是当今世界上6个开发利用地热较好的首都之一(其他5个是法国的巴黎、匈牙利的布达佩斯、保加利亚的索菲亚、冰岛的雷克亚未克和埃塞俄比亚的亚的斯亚贝巴)。

北京地热水温大都在25℃~70℃。由于地热水中含有氟、氢、镉、可溶性二氧化硅等特殊矿物成分,经过加工可制成饮用的矿泉水。有些地区的地热水中还含有硫化氢等,因而很适于浴疗和理疗。

目前,北京的地热资源已得到广泛利用。例如,用于采暖的面积已达32万多平方米,可节省建造锅炉房投资300余万元,年节约煤1.8万吨,而且每年还可减少烧煤取暖带来的粉尘污染7.6吨。现有地热泉洗浴50多处,日洗浴60000多人次;利用地热水养的非洲鲫鱼,生长快,肉味鲜美。北京一些印染厂还利用地热水进行印染和退浆,每年可节约煤几千吨。

除北京外,我国许多地区也拥有地热资源,仅温度在100℃以下的天然出露的地热泉就有3500多处。在西藏、云南和台湾等地,还有很多温度超过150℃以上的高温地热田。台湾省屏东县的一处热泉,温度曾达到140℃;在西藏的羊八井建有我国最大的地热电站,这个电站的地热井口温度平均为140℃,发电装机容量为10000千瓦,今后在这里还将建设更大的地热电站。

从温泉分布来看,我国地热资源主要集中在东南沿海诸省和西藏、云南、四川西部等地,这里形成了两个温泉数量多、温度高、埋藏浅的地热带,分别称为滨太平洋地热带和藏滇地热带。前一个地热带共有温泉600多处,约占全国热水泉总数的1/3,其中温泉水超过90℃的有几十处,有的还超过100℃;后一个地热带是我国大陆上水热活动最活跃的一个地区,有大量的喷泉和汽泉。这一地带共有温泉700多处,其中高于当地沸点的水热活动区有近百处,是一个高温水汽分布带。此外,在我国东部的一些盆地内,也蕴藏着较丰富的地下热水,这一地区的范围很广,北起松辽平原、华北平原,南到江汉平原、北部湾海域。例如,天津市区及郊区附近有总面积近700平方千米的地热带,其中深度超过500米、温度在30℃以上的热水井达380多口,最高水温为94℃,年总开采量近5000万吨,可利用的热量相当于30多万吨标准煤。

地热在世界各地的分布也是很广泛的。美国阿拉斯加的“万烟谷”是世界上闻名的地热集中地,在24平方千米的范围内,有数万个天然蒸汽和热水的喷孔,喷出的热水和蒸汽最低温度为97℃,高温蒸汽达645℃,每秒喷出2300万公升的热水和蒸汽,每年从地球内部带往地面的热能相当于600万吨标准煤。新西兰有近70个地热田和1000多个温泉。温泉的类型很多,有温度可达200℃~300℃的高温热泉;有时断时续的间歇喷泉;还有沸腾翻腾的泥浆地。横跨欧亚大陆的地中海—喜马拉雅地热带,从地中海北岸的意大利、匈牙利经过土耳其、俄罗斯的高加索、伊朗、巴基斯坦和印度的北部、中国的西藏、缅甸、马来西亚,最后在印度尼西亚与环太平洋地热带相接。

有人做过计算,如果把全世界的火山爆发和地震释放的能量,以及热岩层所储存的能量除外,仅地下热水和地热蒸汽储存的热能总量,就为地球上全部煤储藏量的1.7亿倍。在地下3千米以内目前可供开采的地热,相当于29000亿吨煤燃烧时释放的全部热量。可以看出。地热能的开发与利用有着广阔的前景。

对于地热能的开发与利用,如果从1904年意大利建成世界第一座地热发电站算起,已有近100年的历史了。但是,只有近二三十年来地热能的开发利用才逐渐引起世界各国的普遍注意和重视。

据统计,目前世界上已有120多个国家和地区发现或打出地热泉与地热井7500多处,使地热能的利用得到不断地扩大。地热能的利用,当前主要是在采暖、发电、育种、温室栽培、洗浴等方面。美国一所大学有3口深600米的地热水井,水温为89℃,可为总面积达46000多平方米的校舍供暖,每年节约暖气费25万美元。冰岛虽然处在寒冷地带,但有着丰富的地热资源,目前全国人口的70%以上已采用地热供暖。

利用地热能发电,具有许多独特的优点:建造电站的投资少,通常低于水电站;发电成本比水电、火电和核电站都低;发电设备的利用时数较长;地热能干净,不污染环境;发电用过的蒸汽和热水,还可以用于取暖或其他方面。

现在,美国、日本、俄罗斯、意大利、冰岛等许多国家都建成了不同规模的热电站,总计约有150座,装机总容量达320万千瓦。

地热发电地热发电的原理与一般火力发电相似,即利用地热能产生蒸汽,推动汽轮发电机组发出电来。目前,全世界约有3/4的地热电站是利用高温水蒸气为能源来发电的。这种电站是将地热蒸汽引出地面后,先进行净化,除掉所含的各种杂质,然后就可以推动汽轮发电机发电。以高温蒸汽为能源的地热电站,大多采用汽水分离的方法发电;对于以地下热水为能源的电站,一般通过一定的途径用地下热水为热源产生蒸汽,然后用蒸汽来推动汽轮发电机组发电。

另外,地热能在工业上可用于加热、干燥、制冷与冷藏、脱水加工、淡化海水和提取化学元素等;在医疗卫生方面,温泉水可以医治皮肤和关节等的疾病,许多国家都有供沐浴医疗用的温泉。

由于天然热泉较少,而且不是各地都有,因而在一些没有天然热泉的地区,人们就利用广泛分布的干热岩型地热能人工造出地下热泉来。人造热泉是在干热岩型的热岩层上开凿而成的,世界上最早的人造热泉是在美国新墨西哥州北部开凿的,井深达3000米,热岩层的温度为200℃。

美国已建造了人造热泉热电厂,发电量为5万千瓦。另外,还在洛斯阿拉莫斯国立实验所钻了2眼深4389米的地热井,先把水泵入井内,12小时后再抽上来,这时水温已高达375℃。法国先后开凿了6眼人造热泉,其中每眼井深6000米,每小时可获得温度达200℃热水100吨。

目前,美国的地热发电站的装机容量已达930万千瓦,到2020年将增加到3180万千瓦。

现在,随着科学技术的发展,人们开始在岩浆体导热源周围建立人工热能存积层,以便开发利用热源蒸汽的高温岩体来发电。人们预计,到21世纪末,全世界地热发电的总能力可达1亿千瓦。

快乐的画板
坦率的金鱼
2025-04-20 15:34:44
在英国西南部康沃尔郡一个叫鲁斯曼诺斯的地方,科学家和工程师们正在开展一项规模很大的研究工作,目的是把埋藏在地下深处的干热岩中的热能开发出来加以利用。

鲁斯曼诺斯地区从上到下都是花岗岩,计划要在这里钻6000米以上的深井,从地面用水管往地下注水,被加热的水变成225摄氏度的高温蒸汽后返回地面,再送去汽轮发电机发电。据估计,如果将这里的干热岩里储存的热量全部开发出来用于发电,那么所产生的电力将可以满足英国全国20%的电力需要。

干热岩是一种存在于地下深处的炽热的岩石,由于这种热岩层里既没有水又没有蒸汽,所以被叫做干热岩。

干热岩到处都有。地壳中蕴藏着巨大的热能,这些热能大多数都储存在干热岩里面。据计算,一块160立方公里那么大的干热岩,温度从290摄氏度下降到200摄氏度,释放出来的热能就相当于美国1970年全年消耗的能源。真是了不起!

问题是,干热岩里既没有水又没有蒸汽,怎样才能把它里面蕴含的热能开发出来呢?

美国人史密斯最先提出一种开发利用干热岩里的热能来发电的技术设想:采用特制的钻机往岩层深处打两口钻井;到达干热岩以后,再用高压水流——“水力爆破法”使两口钻井之间的岩体产生裂缝,构成通路;然后往一口钻井里注水,水被干热岩加热,生成的热水和蒸汽再用水泵从另一口钻井中抽出来;抽出来的热水和蒸汽,即可用来驱动汽轮发电机发电。

第一次开发干热岩的野外实践开始于1973年,具体钻探地点是美国新墨西哥州的芬顿山,这里的地热增温率是每公里65摄氏度。1975年,他们钻了两口上部垂直,下部弯曲的“J”形并,井深都在3000米左右。从1977年到1978年,花了9个月的时间,才用高压注水的办法把两口井打通,抽出155摄氏度的蒸汽维持了75天,尽管产生热量的功率只有3000千瓦,但是这一次成功的实践仍然是有划时代意义的。

接着美国又进行了多次试验。不久前洛斯阿拉莫斯国立实验室钻了两口近4400米的深井,先把水泵进去12小时后再抽上来时,水温已高达375摄氏度。

专家们认为,在一个地区打上二三十口井,发5万千瓦电,满足这个地区2万人口用电的需要——这样的开发方案是比较合适的。

有这样一个总的估计:开发温度在360摄氏度以上的干热岩,所得地下热水和地热蒸汽可以用来发电;如果干热岩的温度在80~180摄氏度之间,那么所得热能只能为家庭或工厂供暖,可光是这后一部分的能量,就等于现在美国所消耗的热能的4000倍。

继美国之后,德国、法国、英国、瑞典、日本等国都开始进行干热岩的开发研究。

法国在两年时间里打出了6口开发干热岩的深井,其中的一口井深6000米,每小时可获得200摄氏度的高温热水100吨。

日本的火山多,干热岩也多,所以日本对开发干热岩特别积极,据说钻井只需钻到1500~2000米的深度,就能获得200摄氏度的地热。日本不仅参加了美国、德国联合开发干热岩的试验,而且还在本国进行了类似的实践。1988年,他们在山形县打了两口1800米的深井,井底花岗岩体的温度大约是250摄氏度,往一口井里注水,100~180摄氏度的热水和蒸汽就从35米远的另一口井中冒出来。

能从地下湿热岩中取得地热并开发成地热田的地方仅仅是少数。可是干热岩不同,只要钻到足够的深度,就一定能找到它。可以说,除了太阳能,世界上数量最大的能源就是我们脚下的干热岩能。专家们说,1立方公里干热岩所含有的能量,相当于一个产油1亿桶的大油田;全球干热岩所含有的能量,相当于全部煤炭、石油和天然气等化石能源的30倍,可供人类使用成千上万年。因此我们不能忘了干热岩。

不过,从地面到地心约6370公里,而我们为了开发干热岩,最深的钻井深度也只有6000米,不到地球半径的千分之一。如果我们把地球比喻成是一只苹果,那么我们现在做的,充其量也只是在苹果身上刺了几个针孔小眼,连薄薄的一层苹果皮还没有穿透哩!苹果皮下又是什么呢?

笼统一点说,硬的地壳底下是软的地幔:地幔是产生岩浆的地方,而岩浆又是生成岩石的原料。

提到岩浆我们就会想起火山,火山喷发不就是喷出熔融赤热的岩浆吗?岩浆的温度至少也有上千度,比干热岩要高得多,是否也可以开发利用呢?

至少美国、日本、前苏联的科学家这么想了,而且已经着手进行试验研究。

岩浆通常产生在100公里深的地下,不过有时它也会进入地壳,并在某个较浅的地点积存起来;岩浆沿着地壳的裂缝喷出地表就是火山喷发。这就是说,应该到火山口的附近去寻找埋藏比较浅的岩浆,并利用它的热能来发电。

美国从1975年开始对岩浆发电进行理论研究,1984年又做了实证研究。接着,他们在夏威夷岛的一个熔岩湖搞了现场试验。在这些科研工作的基础上,美国决定在加利福尼亚州猛犸湖附近的长谷火山口打一口6096米的深井,正式进行岩浆发电的实践。

事情说起来很简单,为了利用岩浆中的热能,可以钻井到有岩浆的地方,利用岩浆的热把水变成蒸汽,然后让蒸汽去推动发电机发电。但要做起来却会遇到巨大的困难,你想,岩浆被厚厚的岩层覆盖在地下,温度很高,压力很大,正憋足劲儿想往上窜呢!若在它上面钻口井给它找出路,这不如同在火药库旁边玩火一样危险吗?

需要解决的难题很多,科学技术正是在解决难题的过程中得到发展的。

美国已经对本国可利用的岩浆资源进行过估算,大约相当于250亿~2500亿桶石油,比美国全部矿物燃料的蕴藏量还多。

前苏联一些科学家认为,只要在堪察加无名火山上安装发电机进行岩浆发电,它的总功率就可以超过100个伏尔加电站的发电能力。

我国著名地质学家李四光生前说过:“地下热库正在闷得发慌,焦急地盼望着人类及早利用它,让它能沾到一份为人民服务的光荣!”

那么,就让我们大家一起来“唤醒”沉睡在地下的地热资源,使它们有机会来为我们和我们的子孙后代造福吧!

舒适的枕头
落后的睫毛膏
2025-04-20 15:34:44
新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。\x0d\x0a据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。\x0d\x0a联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。\x0d\x0a一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。\x0d\x0a新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

刻苦的路人
矮小的早晨
2025-04-20 15:34:44
当然是

地热能是来自地球深处的可再生热能。它起源于地球的熔融岩浆和放射性物质的衰变。地下水的深处循环和来自极深处的岩浆侵入到地壳后,把热量从地下深处带至近表层。在有些地方,热能随自然涌出的热蒸汽和水而到达地面,自史前起它们就已被用于洗浴和蒸煮。通过钻井,这些热能可以从地下的储层引入水池。 房间、温室和发电站。这种热能的储量相当大。据估计,每年从地球内部传到地面的热能相当于100PW•h。不过,地热能的分布相对来说比较分散,开发难度大。实际上,如果不是地球本身把地热能集中在某些地区(一般来说是那些与地壳构造板块的界面有关的地区),用目前的技术水平是无法将地热能作为一种热源和发电能源来使用的。

严格地说,地热能不是一种“可再生的”资源,而是一种像石油一样,可开采的能源,最终的可回采量将依赖于所采用的技术。将水(传热介质)重新注回到含水层中可以提高再生的性能,因为这使含水层不枯竭。然而在这个问题上没有明确的结论,因为有相当一部分地热点可采用某种方式进行开发,让提取的热量等于自 然不断补充的热量。实事求是地讲,任何情况下,即使从技术上来说地热能不是可再生能源,但全球地热资源潜量十分巨大,因此问题不在于资源规模的大小,而在于是否有适合的技术将这些资源经济开发出来。

地热能是指贮存在地球内部的热能。其储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度, 那么地热能便是可再生的。高压的过热水或蒸汽的用途最大,但它们主要存在于干热岩层中,可以通过钻井将它们引出。

地热能在世界很多地区应用相当广泛。老的技术现在依然富有生命力,新技术业已成熟,并且在不断地完善。在能源的开发和技术转让方面,未来的发展潜力相当大。地热能是天生就储存在地下的,不受天气状况的影响,既可作为基本负荷能使用,也可根据需要提供使用。

地热能的利用自古时候起人们就已将低温地热资源用于浴池和空间供热, 近来还应用于温室、热力泵和某些热处理过程的供热。在商业应用方面,利用干燥的过热蒸汽和高温水发电已有几十年的历史。利用中等温度(100℃)水通过双流体循环发电设备发电,在过去的10年中已取得了明显的进展,该技术现在已经成熟。地热热泵技术后来也取得了明显进展。由于这些技术的进展,这些资源的开发利用得到较快的发展,也使许多国家的经济上可供利用的资源的潜力明显增加。从长远观点来看,研究从干燥的岩石中和从地热增压资源及岩浆资源中提取有用能的有效方法,可进一步增加地热能的应用潜力。 地热能的勘探和提取技术依赖于石油工业的经验,但为了适应地热资源的特殊性(例如资源的高温环境和高盐度)要求,这些经验和技术必须进行改进。地热资源的勘探和提取费用在总的能源费用中占有相当大的比例。这些成熟技术通过联合国有关部门 (联合国培训研究所和联合国开发计划署)的艰苦努力,已成功地推广到发展中国家。