如何防止结焦?
1.选择合理的运行氧量。2.选择合理的炉膛出口温度3.保证空气和燃料的良好混合,避免在水冷壁附近形成还原性气氛,防止局部严重积灰、结焦。4.应用各种运行措施控制炉内温度水平。5.加大运行中过量空气系数,增加配风的均匀性,防止局部热负荷过高和产生局部还原性气氛,调整四角风粉分配的均匀性,防止一次风气流直接冲刷壁面,必要时采取降负荷运行。6.组织合理而良好的炉内空气动力场是防止结焦的前提。7.当灰渣撞击炉壁时,若仍保持软化或熔化状态,易黏结附于炉壁上形成结焦,因此必须保持燃烧中心适中,防止火焰中心偏斜和贴边。
原发布者:侯静7130
锅炉结焦
原因及处理方法影响锅炉结焦的主要因素有:煤质差(灰熔点低)、
炉膛
温度和空气动力场,火焰中心抬高,炉膛出口温度增高,低氧燃烧产生过多还原性气体,吹灰不及时、长期高负荷运行等。解决措施:一、严格控制入厂煤和入炉煤:煤种变化将对结焦有很大影响,特别是燃用灰熔点低、挥发份相对较高的煤种。因此要加强对入厂煤和入炉煤化验,严格把关,其在下部炉膛燃烧时
着火点
早,火焰相对密集,造成扩散性燃烧,下部炉膛容积热负荷较大,从而造成局部高温区壁面结渣。因此燃用设计煤种是防止炉膛结焦最重要的因数。二、运行方面防止锅炉结焦的技术措施:1.运行中加强配风工况调整,调节三次风,使火焰不贴壁;调节二次风使其提供充足的氧量保证煤粉的充分燃烧;调节一次风,使火焰长度合适;调节吸风机,保持炉膛负压在-70pa左右;既要保证煤粉在炉膛内充分燃烧所需要的时间,又要避免在下炉膛形成扩散燃烧。控制氧量在4%-6%之间,严禁缺氧燃烧。2.加强燃烧调整,避免大起大落,幅度太大。严格控制升温升压速度,防止出现两侧烟气温度偏差。3.加强制粉系统检查,防止喷燃器结焦运行。1)正常巡回检查中,一定要注意检查
燃烧器
区及粉管闸板门前、后温度,发现异常,及时汇报,进行处理。2)磨煤机正常运行中,DCSCRT一定要注意监视各粉管风压,并注意其变化趋势。发现异常,要立即就地检查并实测燃烧器温度。若温度偏高,应立即停运并进行吹扫。若燃烧器就地温度正常,其它参
1.合理控制四角燃烧锅炉炉内气流切圆直径。四角燃烧锅炉减小炉内气流切圆直径、降低煤粉细度均可减小煤灰颗粒向水冷壁的惯性迁移,有利于减轻结渣,当四角风速分配不均,炉内旋转气流中心偏斜或某一角一次风因速度低而偏转刷墙时,煤灰颗粒的惯性撞击几倍甚至几十倍的增加,这大大增加了结渣的速度和程度。因此,控制灰粒向水冷壁的惯性迁移,对防止锅炉结渣具有非常重要的意义。 2.水冷壁附近温度水平。煤灰粒子的冷却过程取决于炉内总体温度水平及水冷壁附近温度水平,温度增高,结渣程度将按指数规律增长。水冷壁附近的温度分布除与炉膛中心温度、水冷壁吸热热流有关外,还与水冷壁表面的清洁程度有关。当水冷壁表面附有灰渣时,表面温度迅速增高。这不仅有可能使灰渣表面具有粘性,捕捉飞灰,而且还降低了惯性输运灰粒的冷却程度,因而灰渣的积聚具有自动加剧性,即一旦发生结渣,其程度将会越来越严重。 3.炉内燃烧的组织状况。若一次风门与二次风门调节不当,则会使炉膛内煤粉与空气的混合不好,造成煤在炉内燃烧不良、烟气温度不均匀。在烟气温度高的地方,管壁温度高,未燃尽的煤粉颗粒一旦粘结在上面继续燃烧,将形成灰的粘附。在空气少的地方,容易产生燃烧不完全,产生大量的CO,使灰熔点降低,导致结渣。此外,由于炉膛内的烟气处于剧烈的运动中,烟气成分不断变化,同一煤种的煤灰在不同部位的灰熔点可能不同,也促进了结渣。
一、煤种控制:
1、燃用设计煤种。
2、燃烧低熔点的煤时,采用高熔点的煤种进行掺烧。
3、煤场应始终存放一定数量的灰熔点高于1200℃的大矿煤,在锅炉严重结焦时,调整入炉煤,改善结焦状况。
4、添加除焦剂
二、锅炉设计:
1、锅炉设计热负荷不宜过大或过于集中。
2、尽量采用蒸汽吹灰器。实践证明,声波、脉冲和压缩空气吹灰神马都是浮云!
3、采用湿式捞渣机,干式害人不浅。
4、定期做炉膛空气动力场试验,避免气流紊乱。
三、运行控制:
1、保持合适氧量。
2、避免长时间超负荷运行。
3、增强吹灰打焦。
4、减少炉底漏风。
5、保持合适的煤粉细度。
锅炉运行中随着烟气一起运动的灰渣颗粒,当炉膛内温度较高时,一部分灰颗粒已经达到熔融或半熔融状态,若这部分灰颗粒在达到受热面前未得到足够冷却达到凝固状态,具有较高的粘结能力,就容易粘附在受烟气冲刷受热面或炉墙上,甚至达到熔化状态,结在飞灰颗粒表面,成为熔融的碱化物膜,然后粘附在受热面上形成初始结焦层,成为结焦发展的条件
预防结焦的措施:
1)合理调整燃烧。使炉内火焰分布均匀,火焰中心不偏斜。
2)保证适当的过剩空气量,防止缺氧燃烧。
3)避免锅炉负荷超出力运行。
4)定期除灰。勤检查,发现积灰和结焦庄及时清除。
在检修方面应做到:
1)提高检修质量,保证燃烧器安装精确。
2)检修后的锅炉严密性要好,防止漏风。
锅炉炉膛结焦
炉膛结焦危害性:
1)引起汽温偏高。炉膛大面积结焦时,使水冷壁吸热量大大减小,炉膛出口烟气温度偏高,过热器传热强化,造成过热汽温偏高,管壁超温。
2)破坏水循环。炉膛局部结焦后,结焦部位水冷壁吸热量减少,循环水速下降。严重时会使循环停滞而造成水冷壁爆管。
3)增加排烟热损失。由于结焦使炉膛出口温度升高,造成排烟温度升高,从而增加了排烟热损失,降低锅炉效率。
4)严重结焦时,还会造成锅炉出力下降,甚至被迫停炉进行除焦。
一、结焦的概念
在锅炉炉膛中心,火焰温度高达1400-1600℃左右,煤粉燃烧时,其灰分处于熔化状态,当熔化的灰粒在离开火焰碰到受热面或炉墙时受到冷却就会粘附在受热面的管子或炉墙上,而且越结越多,这种现象就叫结焦。
二、煤粉燃烧和灰粉熔化状态
大家注意到上述概念牵扯到了这样的几个名词:煤粉燃烧,灰粉熔化状态,那么有必要对煤粉燃烧和灰粉熔化状态进行一简单的介绍:
1、煤的成分
为了了解煤的某些特性,将煤的成分分为:碳(C)、氢(H)、氧(O)、氮(N)、硫(S)、水分(H2O)、灰分(A);这里主要介绍灰分,灰分是煤粉燃烧完全燃烧后形成的固体残余物的统称,其主要成分有硅、铝、铁和钙以及少量的镁、钛、钠和钾等元素的组成的化合物。
依据炭化程度分,炭化程度越深,挥发分含量越少,碳的含量越多。我国动力煤习惯上分为4类:
(1)无烟煤:挥发分6.5—10%,着火困难,燃尽不易;
(2)贫煤:挥发份低,约 10—19%,燃烧性质与无烟煤接近;
(3)烟煤:挥发分含量高,挥发分19—37%,碳化程度低于无烟煤;
(4)褐煤:挥发分含量较高,挥发分37%以上,有利于着火。
2、灰的性质
灰的性质主要是指它的熔化性和烧结性,熔化性主要影响炉内的运行工况,烧结性主要影响对流受热面的结灰性能。在火焰中心,灰分处于熔化状态或软化状态,具有粘性,如果遇到受热面管子,很容易粘接在上面,形成结渣。
关于灰分的熔化性能,目前都用实验的方法测得,把灰制成底为等边三角形的椎体,底边长为7mm,锥体高20mm,然后加热根据灰的状态变化确定三个温度指标来表示灰的熔化性质:
(1)变形温度t1,指锥顶变圆或开始倾斜的温度;
(2)软化温度t2,锥顶弯至锥底或萎缩呈球形的温度;
(3)熔化温度t3,指椎体呈液体状态能沿平面流动的温度。
3、影响灰熔点的因素:
(1)成分因素:灰的化学成分很复杂,通常用各种氧化物的百分含量来表示,包括SiO2、FeO, Al2O3、Fe2O3,CaO, MgO,Na2O+K2O,TiO2,P2O5等,除氧化钠和氧化钾外,其它氧化物的熔点很高,为1600-2800℃,氧化钠和氧化钾的熔点800-1000℃。当酸性氧化物成分超过80-85%时,灰往往是难溶的,相反碱性氧化物增加就会易溶。
(2)介质因素:煤灰各种氧化物的含量对煤灰的熔融特性的影响,说法不一。煤灰所处环境介质对会的熔融性有影响,,在弱还原性气氛中,铁成氧化亚铁状态Fe0,熔点为1420℃,在还原性介质中,铁成金属态,其熔点为1535℃。
(3)浓度因素:煤中含灰量不同,熔点也会发生变化,实践证明,燃烧多灰分的煤容易结渣,因为灰分在加热中容易接触频繁,产生分解化合助熔等作用的机会大大增加。因此会影响到结焦。
※ 实践证明,当灰的软化温度t2大于1350℃时,造成炉内结焦的可能性不大。为了避免炉膛出口处结焦,炉膛出口温度应低于t2,并至少预留50-100℃。
受热面结渣过程与多种复杂因素有关。任何原因的结渣都有两个基本条件构成,一是火焰贴近炉墙时,烟气中的灰仍呈熔化状态,二是火焰直接冲刷受热面。但是,与这两个因素相关的具体原因有很复杂。
三、锅炉结渣分析
近年,各个电厂锅炉结渣问题突出,不少300MW机组都发生过严重结渣。锅炉结渣不仅影响机组的经济满发,而且严重威胁安全运行。
1 与锅炉结渣有关的因素
结渣是复杂的物理和化学过程,国内外学者已做了大量研究,初步揭示了其形成的机理及与煤灰性质的关系,制定了若干用以判断煤灰结渣性的指数,同时揭示了锅炉设计和运行对结渣的影响。
1.1 灰与渣的特性
煤灰的结渣性同灰的化学成分、灰渣的物理特性有关。现选择其中一些主要的指标详述如下。
1.1.1 灰的熔化温度
灰熔温度同灰的成分有关,灰中的酸性氧化物,如SiO2,Al2O3和TiO2等都是聚合物的构成者,因此会提高灰的熔化温度;碱性氧化物则相反,如CaO,MgO和Na2O等都是聚合物的破坏者,会降低灰的熔化温度。但这种解释对含有大量碱性物的灰来说不适用,所谓“褐煤型灰”就会有大量CaO和MgO,其量比Fe2O3多得多,这些灰中的SiO2、Fe2O3、Na2O和K2O都会降低软化温度,而Al2O3、CaO和MgO却提高软化温度。美国对国内一些特定煤种,依据大量统计数据已建立了精确的灰熔温度与灰化学成分之间的关系,这样,根据灰中的碱性组分就可以确定灰熔点。
至于灰中铁的作用,要视其氧化状态而定,三价铁是聚合物的构成者,提高灰熔温度;二价铁则是聚合物的破坏者,降低灰熔温度。
灰的熔化温度在氧化氛围与还原氛围中是不同的,两者的差异是随着灰中CaO和MgO成分的增加而变小。
1.1.2 渣的粘度
焦渣的粘度随温度而变化,温度升高,粘度变小,超过某一临界值时,焦渣便成液相,可在水冷壁表面形成一薄层而自由流动,焦渣粘度温度曲线是预示煤粉炉结渣倾向的重要指标。研究表明,焦渣粘度与煤灰化学成分有关,当烟煤焦渣温度超过其临界粘度相对应的温度Tcv后,焦渣粘度就与灰分中的硅比SiO2/(SiO2+ Fe2O3+ CaO+ MgO)有一定的关系。英国根据(SiO2/ Al2O3)、Fe2O3、CaO、MgO来确定与临界粘度相对应的温度。
从临界粘度(约10~20Pa·s到约104 Pa·s范围内的焦渣呈塑性状态液固两相混合),可根据其所对应的温度区域考虑吹灰器的型式和位置。
1.1.3 灰的烧结性
B&W利用烧结试验来衡量烟煤的结渣倾向。试验在一个专门的实验性燃烧室内进行,被试煤在其中悬浮燃烧以模拟煤粉炉工况,然后将烧出的灰压进一个直径17mm、高19mm的圆筒内,再将压出的灰块置于1.03MPa和704~1093℃下在空气中加热15个小时,然后慢慢冷却。该烧结灰块的烧结温度、破碎强度与结渣倾向密切相关,B&W把这作为评价煤的主要指标之一。易结渣的煤在927℃以下烧结强度高达27.58MPa,而不易结渣的煤在927~1093℃范围内的烧结强度低于6.9 MPa。
1.1.4 几个反映结渣倾向的导出因子
美国CE和B&W等锅炉制造厂都各自研究和导出一些显示结渣和积灰特性的指标,现将有关结渣的指标列于附表中。CE公司在评价结渣倾向时除了采用灰熔点外,还采用:
(1)碱酸比
如前所述,煤灰中碱性组分与灰熔点之间的关系呈抛物线形,碱酸比在0.4~0.7(大约30%~40%标准含量的碱性物)时最易结渣。
(2)硅铝比
当以碱酸比作为判断结渣性指标时,还需注意硅铝比。在碱酸比低的情况下,如硅铝比高,铝将发挥溶剂作用而降低T250。T250是对应于粘度为250P(泊)时的灰渣温度,一般说,灰渣粘度低于250P时,流动性就很好。硅铝比小于1.7不结渣,大于2.8将结渣。
(3)铁钙比
此比值在0.3~3.0范围内会影响灰渣的共熔特性,使灰熔点降低,结渣倾向增加趋向1时会严重结渣;小于0.3或大于3.0都不结渣。
(4)2.0重液中的铁
CE采用在比重为2.9重液中沉积下的煤灰铁含量作为衡量黄铁矿的多少。黄铁矿在燃烧过程中不起反应而离析出来,形成焦渣结在靠近燃烧器的炉膛下部水冷壁上。
(5)单位发热量的煤灰量
每百万英镑热单位的煤灰量被用来估量可能生成的渣和积灰的数量(当然还要依据灰的结渣和积灰特性)。
B&W用另一些指标来估计结渣倾向。
①根据灰渣粘度导出的结渣指数RSV
RSV=T250(氧化)-T1000(还原)/(97.5*FS)
式中:
T250(氧化)——氧化氛围下灰渣粘度25Pa·s所对应的温度
T1000(还原)——还原氛围下灰渣粘度1000Pa·s所对应的温度
FS——一个相关系数,其数值范围为1~11,取决于灰渣粘度/温度曲线上对应于200Pa·s的温度(氧化与还原氛围的中间值)
RSV由0.5变化到3.0,相对应的结渣倾向由中等到严重。
②依据灰熔化温度导出的结渣指数Rsf Rsf=(MaxHT+4*MinID)/5
式中:
MaxHT——氧化或还原氛围下较高的半球形温度
MinID——氧化或还原氛围下较低的开始变形温度
Rsf是一个加权平均温度,以1份氧化或还原氛围下的最大半球形温度和4份氧化或还原氛围下的最小开始变形温度来平均。Rsf低于1149℃预示严重结渣;Rsf在1232~1343℃范围内预示中等结渣倾向。
③由灰的化学成分导出的结渣指数Rsb
Rsb=(CaO+MgO+Fe2O3+Na2O+K2O)*S%(干燥基)/(SiO2+ Al2O3+ TiO2 )
Rsb指数主要用于烟煤型灰,即灰中Fe2O3的含量大大高于CaO和MgO含量,Rsb植的范围从0.6以下(代表轻度结渣趋势)到2.6以上(代表严重结渣趋势)。
1.2 设计因素
美国电力研究协会(EPRI)曾对燃用各种不同因素煤种的锅炉作了调查,结论是结渣和积灰不仅与煤灰性质有关,而且同锅炉设计密切相关,主要是炉膛热强度(包括炉膛容积热强度和断面热强度)、煤粉在炉膛内逗留的时间、燃烧器结构型式以及受热面的布置等。同一煤种,在某台锅炉上燃烧会严重结渣,而在另一台设计不同的锅炉上可能根本不结渣。同时,锅炉设计在改善灰沉积物方面也起着重要的作用。
1.3 运行因素
锅炉结渣积灰与锅炉负荷、烟气温度、煤粉细度、过剩空气量等有关。 结渣、积灰随锅炉负荷及烟气温度的增加而增加。
煤粉细度对炉膛结渣的影响说法不一,其一,提高煤粉细度将使燃烧区域温度升高,从而加剧结渣,我国125MW机组的运行实践也表明,煤粉过细着火快,燃烧器区域易结渣。而在一台600MW机组上进行的试验结构却相反,其结论是粗煤粉将加重结渣。笔者认为煤粉细度应视煤种与具体的锅炉结构而定,过细不仅增加制粉电耗,而且会提高燃烧器区域热负荷而可能引起结渣;过粗不仅不利于着火和煤粒的燃尽,而且易造成炉膛上部和过热器部位结渣。所以应通过试验确定合理的煤粉细度。
较大的燃烧过剩空气能减少结渣与积灰,这是由于炉膛内还原区范围缩小以及炉膛出口温度降低。在600MW机组上的试验显示,增加过剩空气,同时将燃烧器正向倾斜,水冷壁和大屏上的沉积物明显减少。
2 防止结渣与积灰的措施
2.1 运行措施
2.1.1 吹灰
对水冷壁结渣和积灰最通常的方法就是吹灰,吹灰可以防止焦渣累积,保持受热面清洁,从而使烟气分布和蒸汽温度维持在设计水平。
吹灰介质一般采用蒸汽,但对于硬焦,用蒸汽往往吹不掉,而采用水力吹灰就很有效。水力吹灰必须设计好喷嘴的尺寸、角度、水压力、水流量、喷枪移动速度以及吹灰频率,以免对水冷壁和过热器造成热冲击。据称,如能正确使用水力吹灰器,那么它对炉管寿命的影响决不会超过蒸汽吹灰(水力吹灰国内用的很少)。
据有些电厂经验,联合使用水、汽吹灰效果更佳,即水吹灰后接着再用蒸汽吹。如美国Big Stone电厂的一台400MW旋风炉,燃用北达科他褐煤,结渣严重,后来在炉膛内装了32只水力喷枪和24只附加的蒸汽吹灰器,有效地控制了积灰;在过热器部位也加装了8只水力吹灰器,同时将原来二级过热器第一、二排的14只蒸汽吹灰器也改为水力吹灰器,使过热器积灰情况大为改善。
吹灰必须做到定期定时,运行人员还需加强检查。此外,很重要的一点是维修要跟上,以确保其使用可靠。
2.1.2 其他运行措施
a. 防止炉温过高。
堵塞炉底漏风,降低炉膛负压,不使空气量过大,直流喷燃器尽量利用上排喷燃器,防止火焰中心上移,以免炉膛出口结渣。
另外,保持各磨出力均匀,使直流喷燃器四角气流的动量相等,切圆合适。防止喷燃器变形,都能防止火焰偏斜,以免水冷壁结渣。
b. 防止炉内过多还原性气体生成
保持合适的空气动力场,不使空气量过小,喷燃器损坏及时修理,都能使炉内减少还原性气体,防止结焦。
c. 提高煤质,保持合适的煤粉细度。
避免燃料多变,清除煤中杂质,可减少结焦的可能性,保持合适的煤粉细度,不使煤粉过粗,以免火焰中心过高,导致炉膛出口结渣,或因煤粉落入冷灰斗又燃烧而形成结焦。
d.控制燃烧过剩空气量。
e.通过调整过剩空气量﹑燃烧器倾斜角度﹑烟气挡板﹑烟气再循环﹑燃烧器选型或其他
可行手段来限制炉膛出口烟气温度在许可的限度内。
f.对于四角燃烧锅炉,国内一些厂的经验是调整一二次风,减小切圆,以避免火焰C冲刷而引起水冷壁结渣。
2.2 改变煤质
2.2.1 配煤
在原来的燃煤中掺入另一种煤可改变煤的性质,达到不结渣的目的。采用此法须注意两点: a.两种煤按一定比例混合,配出来的煤的特性并不是这两种煤数学上的平均值,每一个配煤必须看成是一种新的煤种,其主要特性往往并不是所期望的。
b. 配煤必须均匀。配煤可在煤矿﹑输煤皮带上或在炉膛内进行。
2.2.2 精选煤
通过对原煤精选处理来降低其灰分及杂质。
锅炉结焦的原因:
1、结焦与灰熔点有关。
结焦的根本原因是熔化状态下的灰沉积在受热面上。可见,灰的熔点是结焦的关键。煤灰对于高温受热面沾污结焦的倾向,可用灰熔点温度及灰的主要成分来判断煤灰的结渣指标。
2、 结焦与燃烧器喷射角度有关。
若燃烧器安装角度有偏斜、燃烧器本身存在缺陷,燃烧器切圆过大,煤粉气流发生偏斜擦墙,往往会导致锅炉严重结焦。
3、 结焦与燃烧调整有关。
燃烧调整不合理,一次风压过低,风速过低,煤粉过细,着火早,二次风速过大,四角风量分配不均匀,四角燃烧器粉量不均匀等原因,均会引起煤粉气流擦墙结焦。
4、结焦与锅炉设备漏风有关。
炉膛漏风、制粉系统漏风增大进入炉内的风量,降低燃烧室的温度水平,推迟燃烧进程。冷灰斗处漏风会抬高火焰中心,火焰拉长,导致炉膛出口烟温升高,容易引起屏过结焦。空预器漏风,不但引风机电耗增大,而且部分送风量进入烟道,容易造成炉内缺风。
防止锅炉结焦的解决办法:
1、 选择合理的运行氧量。
提高锅炉运行氧量,避免炉内出现还原性气氛。加强炉内吹灰工作,特别是重点区域要增加吹灰次数,如果运行氧量还偏低,必要时适当降低负荷。由于结焦的主要区域在炉膛出口处,此处容易堵塞烟道,增加烟气阻力,引风机出力更显不足,所以要防止结焦与还原性气氛恶性循环的趋势。机组检修时,对空气预热器进行重点清洗,降低风烟道的阻力,
提高风机的出力。
2、选择合理的炉膛出口温度。
通过对炉膛出口烟温、过热汽温、锅炉负荷、燃烧氧量、炉膛排烟温度等各种运行参数的在线监测,也可以评价锅炉炉膛出口是否会产生结焦,从而防止在燃用不同煤种时锅炉炉膛结焦,并能获得最大的锅炉效率。
3、 应用各种运行措施控制炉内温度水平。
加大运行中过量空气系数,增加配风的均匀性,防止局部热负荷过高和产生局部还原性气氛,调整四角风粉分配的均匀性,防止一次风气流直接冲刷壁面,必要时采取降负荷运行。
4、四角煤粉浓度及各燃烧器配风应尽量均匀。
煤粉喷口煤粉量分配不均匀的状况必然造成炉膛局部缺氧和负荷分配不均匀,在燃烧空气不足的情况下,炉膛结焦状况恶化。当燃烧器配风不均匀或者锅炉降负荷,燃烧器缺角或缺对角运行时,炉内火焰中心会发生偏斜。运行时要尽量调平四角风量,避免缺角情况。
5、适当提高一次风速可以减轻燃烧器附近的结焦。
提高一次风速可推迟煤粉的着火,可使着火点离燃烧器更远,火焰高温区也相应推移到炉膛中心,可以避免喷口附加结焦。还可以增加一次风射流的刚性,减少由于射流两侧静压作用而产生的偏转,避免一次风直接冲刷壁面而产生结焦。
6、炉膛出口温度场应尽可能均匀。
降低炉膛出口残余旋转,均匀的温度分布可使密排对流管束中烟气温度低于开始结焦温度。应用二次风反切来减少残余旋转。
扩展资料
结焦对锅炉运行及安全会造成极大的危害,主要反映在以下几个方面:
(1)锅炉的大焦块掉下后,瞬间产生大量的水蒸汽,使炉底漏入大量冷风,造成燃烧器区域(尤其是下捧燃烧器区域)煤粉火焰着火状况的严重恶化,使炉膛负压产生剧烈波动(超限)而引起锅炉灭火;结焦若熔合成大块时,因重力从上部落下。导致砸坏冷灰斗水冷壁,导致降负荷甚至停炉;
(2)水冷壁全部结焦时,只有停炉进行人工清焦;
(3)炉膛结焦引起过热汽温升高,并导致过热汽温、再热汽温减温水开大,甚至会招致汽水管爆破;结焦会使锅炉出力降低,严重时造成被迫停炉:
(4)结焦会缩短锅炉设各的使用寿命;排烟损失增大,锅炉效率降低;
(5)引风机消耗电量增加。
参考资料:百度百科-锅炉结焦
1.煤质的影响:煤的灰熔点一般在1250~1500℃,而有些煤的灰熔点低于1100℃,燃用这种低灰熔点的煤则非常容易结焦。
2.超负荷运行:设计、安装和使用炉膛容积太小或锅炉超负荷运行,造成炉膛热负荷过高辐射受热面布置较小,水冷壁管间距过大,吸热量偏高。这些都会成为锅炉在运行中产生结焦的原因。
3.清渣打焦:对焦渣清理不及时,把灰渣和红火混在一起,会加剧焦渣形成。
二、防止和沸除结焦的措施
1.改造炉膛结构
2.要防止超负荷运行
3.加强运行操作的调整:对于灰分大的煤应适当增加清炉次数,对于管群、烟管或烟室的堵灰应及时清理。
4.堵漏风:减少漏风量,使炉膛出口负压不至过大。
5.煤要混合掺烧:混合掺烧不同煤种,合理掌握煤块粒度及煤粉细度。
三、打焦注意事项
1.要有足够数量的看火孔和打焦孔,位置和内扩角度要适当。
2.打焦人员要佩带劳动防护用品,最好在锅炉负荷较低,燃烧稳定时打焦。炉膛负压应控制在49~69Pa,燃烧不正常时,应禁止打焦和除尘。
3.做好打焦吹灰记录。打焦吹灰时,不得开送风机,停引风机,不得启动给煤设备和油枪。
4.加强吹灰工作。
2.选择合理的炉膛出口温度,通过对炉膛出口烟温、过热汽温、锅炉负荷、燃烧氧量、炉膛排烟温度等各种运行参数的在线监测,也可以评价锅炉炉膛出口是否会产生结焦,从而防止在燃用不同煤种时锅炉炉膛结焦,并能获得最大的锅炉效率。
3 。保证空气和燃料的良好混合,避免在水冷壁附近形成还原性气氛,防止局部严重积灰、结焦。
4. 应用各种运行措施控制炉内温度水平。
5.组织合理而良好的炉内空气动力场是防止结焦的前提。
6.四角煤粉浓度及各燃烧器配风应尽量均匀。
7.要有合适的煤粉细度。煤粉太粗太细都会引发结焦。
8. 适当提高一次风速可以减轻燃烧器附近的结焦。
9. 炉膛出口温度场应尽可能均匀。均匀的温度分布可使密排对流管束中烟气温度低于开始结焦温度。10. 掺烧不同煤种。煤种掺烧能在一定程度上综合所掺煤种的灰焦特性。低灰熔点煤灰分仍在受热面上沉积,但高熔点固态灰对受热面有一定的冲刷作用,使沉积量降低。
11.配风方面。高负荷开大底层风。
12.加强对炉膛的吹灰,防止低负荷掉灰对锅炉燃烧产生不良的扰动。
更详细关于避免结焦的资料可以搜索【自然人生物质】网站找到关于预防锅炉结焦的资料。
2.选择合理的炉膛出口温度对锅炉进行优化燃烧调整试验,对炉膛出口烟
温(或高温受热面管壁温度)进行在线监视,在保证主参数合格的前提下,建立
在线的优化运行指导系统;通过合理调配各一次风和二次风的运行风门开度以及
运行氧量,保证主参数合格和炉膛出口烟温低于燃煤灰熔点的同时来保证蒸汽质
量,从而防止炉膛出口结焦
3 . 保证空气和燃料的良好混合,避免在水冷壁附近形成还原性气氛,防
止局部严重积灰、结焦。
4.应用各种运行措施控制炉内温度平稳。