建材秒知道
登录
建材号 > 能源科技 > 正文

植物再生能源有什么

喜悦的大叔
喜悦的纸鹤
2023-02-15 08:46:55

植物再生能源有什么?

最佳答案
酷炫的星月
英勇的蜡烛
2025-04-21 08:43:58

可以用作能源的植物。随着化石能源的不断面临枯竭,人们开始在世界范围内寻找替代能源。

可作为能源的植物种类很多,主要是某些农作物及有机残留物,林木、森林工业残留物,藻类、水生植物也是有待开发的能源植物。使用植物作为能源,可以作为固体燃料,或借助科学方法转换为炭、可燃气或生物原油等。林业能源方面,培植生长快、光合作用效率高、繁殖力强的树木在国外已受到重视。中国林业科学研究院试验研究,列出60余种能源植物。森林能源的利用方法有两种:通过干馏来提取煤气、焦油和炭;直接进行燃烧,石油植物也是近年来开辟的一个新领域。

石油是不可再生的能源,故它的枯竭是不可避免的,必然的。所以许多国家都在进行替代能源的研究,能源植物的研究便应运而生了。美国诺贝尔奖获得者卡尔教授,早在1984年就开发出首个人工石油植物,得到每公顷120-140桶原油的收成。美国现已种植石油植物达几百万亩之多,英国也开发了150万亩,而瑞士更制订计划利用植物石油取代全国半数石油消耗量。

欧洲和北美也大量种植多年生草本植物,作为燃料发电,如象草就是这样一种植物。英国还查明,草原网草,大网茅和高沙草等植物的生长速度快,是种植的重要能源植物。还有大戟科的大戟属,红雀珊瑚属和海漆属,也是理想的燃料植物。

树海桐,又叫石油果 ,是一种潜在的石油代用品。巴西的香波树,在树上挖个洞,油就会流出来。美国的黄鼠草,西海岸的巨型藻,澳大利亚的丛粒藻等也能提炼出石油来。

我国也不乏石油植物,如海南的汕楠树,还有桉树,都能高产石油。经科学家鉴定,有生产价值的能源植物,生长在亚太地区的,就有10多种草本植物,18种灌木,23种乔木和18种灌木。

富含类似石油成分的能源植物

续随子、绿玉树、西谷椰子、西蒙得木、巴西橡胶树等均属此类植物。例如巴西橡胶树分泌的乳汁与石油成分极其相似,不需提炼就可以直接作为柴油使用,每一株树年产量高达40L。我国海南省特产植物油楠树的树干含有一种类似煤油的淡棕色可燃性油质液体,在树干上钻个洞,就会流出这种液体,也可以直接用作燃料油。

富含高糖、高淀粉和纤维素等碳水化合物

利用这些植物所得到的最终产品是乙醇。这类植物种类多,且分布广,如木薯、马铃薯、菊芋、甜菜以及禾本科的甘蔗、高粱、玉米等农作物都是生产乙醇的良好原料。

富含油脂的能源植物

这类植物既是人类食物的重要组成部分,又是工业用途非常广泛的原料。对富含油脂的能源植物进行加工是制备生物柴油的有效途径。世界上富含油的植物达万种以上,我国有近千种,有的含油率很高,如桂北木姜子种子含油率达64.4%,樟科植物黄脉钓樟种子含油率高达67.2%。这类植物有些种类存储量很大,如种子含油达15%~25%的苍耳子广布华北、东北、西北等地,资源丰富,仅陕西省的年产量就达1.35万吨。集中分布于内蒙、陕西、甘肃和宁夏的白沙蒿、黑沙蒿,种子含油16%~23%,蕴藏量高达50万t。水花生、水浮莲、水葫芦等一些高等淡水植物也有很大的产油潜力。

用于薪炭的能源植物

这类植物主要提供薪柴和木炭。如杨柳科、桃金娘科桉属、银合欢属等。目前世界上较好的薪炭树种有加拿大杨、意大利杨、美国梧桐等。近来我国也发展了一些适合作薪炭的树种,如紫穗槐、沙枣、旱柳、泡桐等,有的地方种植薪炭林3~5年就见效,平均每公顷薪炭林可产干柴15t左右。美国种植的芒草可燃性强,收获后的干草能利用现有技术轻易制成燃料用于电厂发电。

可再生能源的发展前景随着越来越多的国家采取鼓励可再生能源的政策和措施,可再生能源的生产规模和使用范围正在不断扩大,2007年全球可再生能源发电能力达到了24万兆瓦,比2004年增加了50%。2007年至少有60多个国家制订了促进可持续能源发展的相关政策,欧盟已建立了到2020年实现可持续能源占所有能源20%的目标,而中国也确立了到2020年使可再生能源占总能源的比重达到15%的目标。

自2006年1月可再生能源法实施以来,中国可再生能源已经进入快速发展时期。2007年中国可再生能源项目的投资总额已达到120亿美元,名列世界第二。2008年11月起陆续公布的4万亿投资计划中,也毫无悬念地出现了发展新型清洁能源的投资计划,天然气、核能、水能已经成为优先发展的目标。

根据中国中长期能源规划,2020年之前,中国基本上可以依赖常规能源满足国民经济发展和人民生活水平提高的能源需要,到2020年全国可再生能源利用总量将相当于6亿吨标准煤,对中国能源结构调整,减少温室气体排放,保护生态环境将发挥更大作用。

生产技术

生物柴油生产

化学法

国际上生产生物柴油主要采用化学法,即在一定温度下,将动植物油脂与低碳醇在酸或碱催化作用下,进行酯交 换反应,生成相应的脂肪酸酯,再经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循环使用,生产设备与一般制油设备相 同,生产过程中副产10%左右的甘油。但化学法生产工艺复杂,醇必须过量;油脂原料中的水和游离脂肪酸会严重影响生物柴油 得率及质量;产品纯化复杂,酯化产物难于回收,成本高;后续工艺必须有相应的回收 装置,能耗高,副产物甘油回收率低。使用酸碱催化对设备和管线的腐蚀严重,而且使用酸碱催化剂产生大量的废水,废碱(酸)液排放容易对环境造成二次污染等。

生物酶法

针对化学法生产生物柴油存在的问题,人们开始研究用生物酶法合成生物柴油,即利用脂肪酶进行转酯化反应,制备相应的脂肪酸甲酯乙酯。酶法合成生物柴油对设备要求较低,反应条件温和、醇用量小、无污染排放。需以大豆油为原料,采用固定化酶的工艺,酶用量为 油的30%,甲醇与大豆油摩尔比为12:1,反应温度40℃,反应10h生物柴油得率为92%。因酶成本高、保存时间短,使得生物酶法制备生物柴油的工业化仍不能普及。此外,还有些问题是制约生物酶法工业化生产 生物柴油的瓶颈,如脂肪酶能够有效地对长 链脂肪醇进行酯化或转酯化,而对短链脂肪醇转化率较低(如甲醇或乙醇一般仅为40%—60%);短链脂肪醇对酶有一定的毒性,酶易失活;副产物甘油难以回收,不但对产物形成抑制,而且甘油也对酶也有毒性。

超临界法

即当温度超过其临界温度时,气态和液态将无法区分,于是物质处于一种施加任何压力都不会凝聚的流动状 态。超临界流体密度接近于液体,粘度接近于气体,而导热率和扩散系数则介于气体和 液体之间,所以能够并导致提取与反应同时 进行。超临界法能够获得快速的化学反应和很高的转化率。Kusdiana和Saka发现用 超临界甲醇的方法可以使油菜籽油在4min 内转化成生物柴油,转化率大于95%。但反 应需要高温高压,对设备的要求非常严格,在大规模生产前还需要大量的研究工作。

生物乙醇生产

生物乙醇的生产是以自然界广泛存在的纤维素、淀粉等大分子物质为原料,利用 物理化学途径和生物途径将其转化为乙醇的一种工艺,生产过程包括原料收集和处理、糖酵解和乙醇发酵、乙醇回收等三个主要部分。发酵法生产燃料酒精的原料来源很多,主要分为糖质原料、淀粉质原料和纤维素类物质原料,其中以糖质原料发酵酒精的 技术最为成熟,成本最低。木质纤维原料要先经过预处理再酶解发酵,其中氨法爆破(ammonia fiber explosion)技术, 被认为是最有前景的预处理方法。随着耐高温、耐高糖、耐高酒精的酵母的选育和底物流加工艺,发酵分离耦合技术的完善,工业 发酵酒精的成本还将越来越低。

最新回答
复杂的画笔
优雅的龙猫
2025-04-21 08:43:58

可再生能源是指在自然界中可以不断再生、永续利用的能源,具有取之不尽,用之不竭的特点,主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。可再生能源对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。

● 太阳能

太阳能是来自地球外部天体的能源。人类所需能量的绝大部分,都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能,在植物体内储存下来。太阳能的利用有光热转换和光电转换两种方式。太阳能发电是一种新兴的可再生能源。

● 风能

风能地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后,气温变化不同以及空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。

● 水能

水能是清洁能源、绿色能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源,是常规能源,一次能源。人们目前最易开发和利用的比较成熟的水能,也是河流能源。水能主要用于水力发电。其优点是成本低、可连续再生、无污染。缺点是分布受水文、气候、地貌等自然条件的限制大。水容易受到污染,也容易被地形、气候等多方面的因素所影响。

● 生物质能

生物质能是太阳能以化学能形式储存在生物质中的能量形式,即以生物质为载体的能量。对于石油行业来讲,目前最为关切的是生物柴油。它是生物质能的一种,是指以油料作物、野生油料植物和水生植物油脂,以及动物油脂、餐饮垃圾油等为原料油,通过酯交换工艺制成的可代替柴油的再生性燃料。另外,燃料乙醇也越来越受到关注。

● 地热能

地热能是赋存于地球内部岩石和流体中的热能。它是驱动地球内部一切热过程的动力源,其热能以传导形式向外输送。地球内部温度高达7000℃,这些巨大的热能,透过地下水的流动和熔岩涌动至离地面1~5千米的地壳,热力得以被转送至接近地面的地方。高温的熔岩将附近的地下水加热。这些加热了的水,最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。

● 海洋能

海洋能指依附在海水中的可再生能源。海洋通过各种物理过程接收、储存和散发能量。这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式,存在于海洋之中。地球表面积约为5.1亿平方千米,其中陆地表面积为1.49亿平方千米,占29%;海洋面积达3.61亿平方千米,占71%。以海平面计,全部陆地的平均海拔约为840米,而海洋的平均深度却为380米。整个海水的容积多达13.7亿立方千米。一望无际的大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏着巨大的能量。它将太阳能以及派生的风能等,以热能、机械能等形式蓄在海水里,不像在陆地和空中那样容易散失。

高高的白云
无聊的山水
2025-04-21 08:43:58

可再生能源有:

1、水能

水能是清洁能源,是绿色能源,是指水体的动能、势能和压力能等能量资源。这种可再生能源主要用于水力发电。水力发电将水的势能和动能转换成电能。另外,磨坊也是采用水能的好例子。

2、风能

人类已经使用了风力几百年了。如风车,帆船等。风能是空气流动所产生的动能,是太阳能的一种转化形式。风能利用是综合性的工程技术,通过风力机将风的动能转化成机械能、电能和热能等。

3、太阳能

自古人类懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。而在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,可以利用光热转换和光电转换两种方式,如太阳能发电。另外,广义上的太阳能也包括地球上的风能、化学能、水能等。

4、地热能

人类在很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖,以及烘干谷物等。

5、海洋能

海洋能,就是利用海洋运动过程来生产的能源。这种能源包括潮汐能、波浪能、海流能、海洋温差能和海水盐差能等,比如一些沿海国家的海岸线,就可以用海洋能来进行潮汐发电。

6、生物质能

生物质能是自然界中有生命的植物提供的能量。这些植物以生物质作为媒介储存太阳能。许多的植物都被用来生产生物质能,包括了芒草、柳枝稷、麻、玉米、杨属、柳树、甘蔗和沼气(甲烷)牛粪等。当前较为有效地利用生物质能的方式有: (1) 制取沼气。(2) 利用生物质制取酒精。只是生物质能所占比重微乎其微。

眯眯眼的紫菜
细腻的皮带
2025-04-21 08:43:58

随着能源消耗量的不断增加,有限的常规化能源煤、石油、天然气等日趋紧缺,然而,正当人们对能源的前景感到暗淡和忧虑的时候,科学家发现了新的再生能源,即石油植物。

所谓石油植物,指那些可以直接生产工业用燃料油,或经发酵加工可生产燃料油的植物的总称。例如,现已发现的大量可直接生产燃料油的植物,主要分布在大戟科,如绿玉树、三角戟、续随子等。这些石油植物能生产低分子量氢化合物,加工后可合成汽油或柴油的代用品。

据专家研究,有些树在进行光合作用时,会将碳氢化合物储存在体内,形成类似石油的烷烃类物质。如巴西的苦配巴树,树液只要稍做加工,便可当做柴油使用。如前所述,目前全世界植物生物质能源每年生长量相当600亿吨至800亿吨石油,为目前世界开采量的20倍至27倍,可见潜力之大。目前,英、美等一些工业发达国家用木材加工出石油已达到实用阶段。英国一家公司采用液化技术,用100千克木材生产了24千克石油,同时还生产出16千克沥青和15千克蒸气。美国俄勒冈州一家以木片为原料的工厂,100千克木片可制取30千克石油。

石油植物

淡定的香菇
高挑的朋友
2025-04-21 08:43:58
生物体内的主要能源物质是(糖类 ),细胞中的主要能源物质是(ATP ),植物细胞内的主要的储能物质是(淀粉 ),动物细胞内的主要储能物质是( 糖原 ),生物体内良好的储能物质是(脂肪 ) ,还有就是直接的供能物质是atp,能量的最终来源是太阳能.

简单的外套
健康的心情
2025-04-21 08:43:58

植物细胞的主要能源物质是葡萄糖,植物细胞的储能物质为淀粉。

糖在体内有以下两方面的功能:

1、细胞的重要能源物质:动物体摄取糖后,大量的糖是作为能源物质被使用。糖在体内氧化,释放能量,释放的能量以热散发维持体温和贮存于ATP、磷酸肌酸中以供生命活动所用。

动物体摄取的糖如果有剩余,能够合成肝糖原和肌糖原以贮存糖,但量相对较小,一个中等身材的人只能贮存约500g左右的糖原。糖在身体内很容易转化为高度还原的能源贮存形式脂肪,贮存于脂肪组织,以供糖缺乏的时候给身体提供能量。

2、糖在细胞内与蛋白质构成复合物,形成糖蛋白和蛋白聚糖,广泛地存在与细胞间液、生物膜和细胞内液中,它们有些作为结构成分出现,有些作为功能成分出现。因此,糖蛋白和蛋白聚糖也是生命现象的“演员”。

扩展资料:

植物细胞的主要构成:

典型植物细胞的细胞质可分为膜(质膜及液泡膜)、透明质和细胞器(内质网、质体、线粒体、高尔基氏体和核糖体等)。透明质为细胞质的无定形可溶性部分,其中悬浮着细胞器及各种后含物。质膜是细胞质的境界,紧贴细胞壁,细胞壁有许多小孔,因此相邻细胞的细胞质是互相贯通的。

质膜对物质的透过有选择性。液泡膜位于细胞质和细胞液相接触的部位,与质膜形态结构基本相似。内质网是散布在透明质内的一组有许多穿孔的膜,是核糖体的集中分布场,有人认为其对细胞壁形成也有一定作用。

质体是真核细胞中所特有的细胞器,呈药片状、盘状或球形,表面有2层膜,其功能同能量代谢、营养贮存和植物的繁殖都有密切关系。质体通常由前质体直接或间接发育而来,前质体一般存在于胚或分生组织中,通常为双层膜,膜内含有比较均一的基质。

质体大体可分三大类,即无色体、叶绿体和有色体。

参考资料来源:百度百科-植物细胞

参考资料来源:百度百科-生物细胞分子

参考资料来源:百度百科-细胞中的生物大分子