环境材料与再生能源研究中心 怎么样好不好
材料属于工科的吧,而南大比较强的是理科了,所以可能不是最顶尖的系。。。
因为我本人当时也想学材料,后来看到材料好像不是很好,所以去南大学化学了我们也是校友哦。。。
不过再怎么说南大的毕业生应该找工作还好了,而且近几年工科的毕业生非常好找工作,我舅舅在北大搞材料的,他觉得工科以后的发展比理科好,还说我选错专业了。。。
院系介绍-历史-发展-现状
历史
南京大学材料科学与工程系起源于物理与化学学科的交叉。1990年,在南京大学固体微结构物理国家重点实验室和配位化学国家重点实验室的基础上,组建了材料科学研究所。由闵乃本教授(物理)和杨昌正教授(化学)出任正副所长。1993年成立南京大学材料科学与工程系,闵乃本院士任首届系主任,刘治国教授(物理)和孙祥祯(化学)教授任副系主任。学科创立初期,由于关注到迅速发展的信息产业(主要是微电子和光电子产业)迫切需要高技术信息功能材料与器件,结合我校在物理和化学两大基础学科的优势以及在功能材料方面研究的长期积累,明确地将材料科学与工程系的发展方向定位于功能材料,特别是信息功能材料。确定了"以材料的结构性能、精细人工合成化学与现代光电子技术相互渗透,材料的合成制备—结构性能—器件应用三位一体,发展光电功能材料及器件的学术方向”。建立了晶体生长、有机金属化学气相沉积、脉冲激光沉积和团簇薄膜材料实验室。承担了两项国家高技术研究发展计划(863)的项目,在国际上最早利用铁电超晶格LiNbO3晶体研制成功毫瓦级小型全固化蓝光激光倍频器和工作频率为1GHz的超高频声学换能器。该成果被八五“863”专家委员会评价为“具有国际先进水平的创新性研究”。
喜欢就 关注我们吧,订阅更多最新消息
第一作者:钮峰
通讯作者:涂文广教授,周勇教授,邹志刚教授
通讯单位:香港中文大学(深圳)理工学院
论文DOI:10.1021/acscatal.2c00433
全文速览
通过醇和胺的C-N偶联是工业中合成不同有机胺的重要反应路径,而这一过程往往需要在高温高压等较苛刻的条件下进行。因此,本工作中,我们设计了一种基于CdS-Pd单原子体系催化剂用于实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得二级胺。通过实验研究发现,Pd与CdS表面的悬挂S原子原位配位形成单一Pd-Sx物种。该催化剂的可见光催化C-N偶联的二级胺产率接近100%,同时释放出可观的绿色能源氢气(11.8 mmol gcat-1h-1)。机理研究与分析表明,苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种而形成H-Pd-Sx中间体。最后,吸附的H又容易脱附,加成到苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后所需要的二级胺产物苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx配位物种可以作为有效的氢转移的桥梁实现加氢过程。此外,该光催化剂体系具有较好的底物适应性和循环能力。这一工作将为温和条件下实现高效C-N偶联反应提供一种新的思路。
背景介绍
随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。
本文亮点
1. 本工作通过Pd原子与CdS表面的悬挂S原子原位配位制备了一种CdS-Pd的单原子光催化剂,该催化剂可以实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得近100%产率的二级胺N-苄基苯胺以及较高的产氢活性。
2. 实验和理论计算结果证实了,相比于Pd纳米颗粒助催化剂负载的CdS,单一Pd-Sx物种能够有效捕获光生电子,使其具有较长的寿命,而且氢在Pd-Sx物种上的吸脱附能力较强,从而可以作为有效的氢转移载体实现亚胺的加氢,得到目标产物二级胺。
3. 此外,在优化的反应条件下,该催化剂具有较好的稳定性,以及对不同醇类和取代胺的C-N偶联反应具有良好的底物适应性。
图文解析
本工作中,首先我们采用水热法制备了六方晶系结构,颗粒尺寸约为50 nm的纳米球形CdS,其带宽约为2.2eV( 图1 a )。随后,在可见光催化C-N偶联反应过程中加入PdCl2溶液原位合成单原子催化剂CdS-Pd SAs。作为对比,我们采用浸渍法制备了Pd纳米颗粒负载的CdS催化剂CdS-Pd NPs。从图1b的XPS图谱可以看出,光催化反应后的CdS中事实上存在Pd元素。结合能336.7 eV和342 eV分别对应Pd 3d5/2和Pd 3d3/2,表明Pd以2+价态形式存在,而非单质态。因此,我们可以初步推测反应后,Pd与CdS进行了一定的配位。
图1 CdS和CdS-Pd SAs单原子催化剂的结构表征
为了进一步确定反应后Pd的状态以及与CdS的配位环境,我们对样品分别进行了X射线精细结构谱(XAFS)和球差电镜的表征。从图3d可以明显看出反应后的CdS表面上的Pd物种既不是二价态也不是单质态,而是以一定配位的形式存在。通过对样品CdS-Pd SAs中Pd的K-edge EXAFS图谱进行拟合,可以得出Pd-S的配位数约为3( 表1 )。通过进一步的HAADF-STEM和 EDS mapping图可以清晰地看到Pd以单原子形式均匀地分散在CdS上( 图1 e-j )。因此,综合上述表征方法,我们可以初步证实在光催化反应过程中,PdCl2以Pd-S配位键的形式将Pd原子锚定在了CdS载体上,为光催化反应过程提供一定的反应活性中心。
表1 样品CdS-PdSAs中Pd的EXAFS拟合数据
CN , coordination number R , bonding distance σ 2, Debye-Waller factorΔ E0 , inner potential shift.
为了进一步研究CdS表面的S对催化反应的影响,我们首先对CdS进行了不同程度的表面修饰(400 oC高温煅烧:CdS-400;双氧水表面腐蚀:CdS-H2O2)。从图2 a可以看出,采用不同的手段修饰后,CdS的结构并未发生明显变化,仍然是结晶度较好的六方晶系结构。CdS、CdS-400和CdS-H2O2的能带分别为2.21、2.12和2.2 eV,即能带结构也未发生明显变化( 图2 b )。从图2 c和d可以明显看出, CdS通过表面修饰之后,Cd 3d和S 2p均向高结合能偏移,而且偏移程度随着修饰强度增强而增大。这主要是由于CdS修饰后产生了一定的S空位,使得表面部分Cd暴露,从而改变了Cd和S的周边电子云密度分布。
图2 修饰前后的CdS结构表征
在常温常压氮气气氛下,我们采用苯甲醇和苯胺的C-N偶联作为模型反应对所制备的催化剂进行可见光催化活性评价( 图3 )。首先我们确定了暗反应、无光催化剂以及只有PdCl2的情况下该模型反应没有任何催化活性。在添加PdCl2的条件下,我们对不同的半导体光催化剂进行了活性筛选,发现只有CdS能有效地进行光催化C-N偶联生成二级胺(N-苄基苯胺),产率高达1.48 mmolgcat-1h-1。而其他半导体催化剂在反应过程中只能催化生成亚胺(N-苄烯苯胺),且普遍产率较低(<0.12 mmolgcat-1h-1)。
图3 可见光催化C-N偶联反应的催化剂活性筛选
基于CdS对该反应的催化特异性,我们测试了其苯胺的转化率及产物的选择性随时间的变化曲线。从图4b可以看出,随着反应的进行,苯胺的转化率不断提高,当反应达到16 h后,底物苯胺几乎完全转化。随着反应的进行,亚胺(N-苄烯苯胺)的选择性不断降低,而二级胺(N-苄基苯胺)的选择性不断提高,表明反应过程中逐步完成了亚胺的加氢过程。
为了进行对比,我们采用浸渍法提前将Pd纳米颗粒沉积到CdS表面上并进行光催化活性评价。从图4c我们发现,沉积Pd纳米颗粒的CdS催化活性是单一CdS活性的4倍。这主要是由于Pd纳米颗粒作为助催化剂可以有效地提高光生载流子的分离效率。而当我们将Pd以PdCl2的形式加入到反应体系中时,催化活性是单一CdS活性的约6.4倍。而且产物中出现了二级胺(N-苄基苯胺)。也就是说反应体系中原位加入PdCl2能够促使该反应完成加氢过程,有效实现氢转移。因此,我们可以初步推断,光催化反应过程中Pd和CdS表面悬挂的S作用产生的Pd-S物种对实现C-N偶联起到至关重要的作用。此外,在反应过程中我们可以检测到氢气的生成。从图4d可以看出,单一的CdS在反应过程中几乎不产生氢气。而CdS-Pd SAs产氢速率达到11.8 mmolgcat-1h-1,是CdS-Pd NPs的约2.7倍,CdS的近10倍。这一结果也与苯胺转化率的差异相吻合。
为了验证CdS表面的S与Pd作用形成了Pd-S物种,从而提高了C-N偶联反应性能,我们对CdS进行了不同程度的表面修饰。从图4e可以明显看出,随着表面修饰的增强,反应的活性逐渐下降,而且产物苄基苯胺的选择性也随之下降。这也就意味着,当我们遮盖或者去除部分S位点,反应底物在催化剂表面的吸附性能下降,从而导致反应活性降低。另一方面,由于S空位的增多,使得Pd原子很难与S进行配位产生Pd-S物种,从而无法完成C-N偶联反应过程中的氢转移,也就不能得到饱和的目标产物二级胺N-苄基苯胺。
图4 可见光催化活性评价
为了研究在光催化反应过程中不同自由基的作用,我们进行了捕获实验。从图5a可以看出,当体系中加入叔丁醇和苯醌来分别捕获•OH和•O2-,反应的活性基本没有发生变化,说明体系中的这两种自由基对反应基本没有贡献。而当体系中加入草酸铵捕获光生空穴后,产率降为原来的1/3,加入过硫酸钾捕获光生电子后,产率降为0。这一结果表明,光生电子和空穴在光催化C-N偶联反应中有着重要作用。
接着,我们采用超快光谱(TAS)来揭示光照下不同催化剂的载流子衰减动力学。图5b为不同催化剂的瞬态吸收图谱以及拟合曲线。采用双指数模型拟合可获得两个弛豫时间τ1和τ2。Τ1代表导带电子到过渡态的捕获时间,τ2代表电子与过渡态或者价带空穴复合的时间。通过对比,CdS-Pd Sas的弛豫时间明显要长,也就是说,在反应过程中CdS表面单原子态的Pd配位物种Pd-Sx可以作为电子陷阱来捕获光生电子,提高载流子的分离效率,从而加速光催化C-N偶联。另外,从CdS导带转移到过渡态Pd-Sx中间体的弛豫时间更长,更利于氢原子的吸附。
为了研究不同催化剂对于H的吸附以及转移能力,我们做了一个N-苄烯苯胺加氢的模型反应。从图5c可以明显看出,对于单原子态的CdS-Pd SAs催化剂,N-苄烯苯胺较容易实现光催化加氢到苄基苯胺产物,而单质态的Pd(CdS-Pd NPs)催化剂无法实现加氢过程。这也证明了单原子态的CdS-Pd SAs可以很好地吸附H并完成氢转移,从而实现加氢过程得到二级胺N-苄基苯胺。
基于以上的机理表征分析,我们可以给出一个可能的反应机理和路径( 图5d )。光催化反应前,当体系中同时加入CdS催化剂和PdCl2时,PdCl2很快吸附到CdS表面上与表面悬挂的S原子形成Pd-Sx的配位物种。当CdS被光激发后,表面的Pd-Sx配位物种可以有效捕获光生电子,形成•Pd-Sx中间态物种,同时光生空穴能够脱去苯甲醇上的质子,将其氧化成苯甲醛。然后生成的苯甲醛与苯胺进行亲核加成反应,产生醇胺中间体。由于醇胺非常不稳定,很快脱水生成亚胺。苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种形成H-Pd-Sx。最后,吸附的H又容易脱附,加成到N-苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后的目标产物N-苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx物种可以作为有效的氢转移的桥梁实现加氢过程。此外,过多的吸附H可以从H-Pd-Sx上脱附产生H2。
图5 反应机理表征及推测
我们通过DFT模拟计算进一步验证了为什么单原子态的CdS催化剂CdS-Pd SAs可以很好地实现光催化C-N偶联生成N-苄基苯胺( 图6 )。结合EXAFS拟合结果,我们以Pd-S三配位的形式作为计算模型来研究H吸附和反应过程。对于催化剂CdS-Pd NPs来说,在位点1和2的H吸附能分别为-2.801 eV和-2.936eV,而催化剂CdS-Pd SAs的H吸附能为-1.954 eV。通过过渡态能量搜索,可以得出,Pd纳米颗粒负载的CdS-Pd NPs的加氢能垒为0.38 eV,而对于单原子态的CdS-Pd SAs来说,由于形成的Pd-Sx配位物种能够有效地吸附和脱附H,因此脱附的H直接加成到亚胺的不饱和C上,完成加氢过程。
图6 DFT模拟计算
总结与展望
总的来说,我们设计开发了一种CdS-Pd单原子光催化剂,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。结合实验以及模拟计算,我们推测Pd在光催化反应过程中与CdS表面的S原位配位形成Pd-Sx中间物种,而这一中间体可以提高载流子分离效率以及有效地进行H的吸脱附,构成Pd-Sx •Pd-Sx H-Pd-Sx Pd-Sx的循环过程,实现氢转移,完成亚胺的加氢过程,得到目标产物N-苄基苯胺。整个过程中,Pd-Sx中间体可以作为有效氢转移的桥梁实现加氢过程。此外,该催化剂体系具有较好循环能力和底物适应性。这一工作将为温和条件下实现C-N偶联反应提供一种新的思路。
作者介绍
钮峰 ,博士毕业于法国里尔大学(法国国家科学研究中心)(导师Andrei Khodakov教授和Vitaly Ordomsky研究员)。2020年8月加入香港中文大学(深圳)邹志刚院士团队从事博士后研究。以第一作者在ACS Catalysis,Green Chemistry,Solar Energy Materials &Solar Cells等期刊上发表SCI论文12篇。目前主要研究方向为多相热催化、光催化能源转化。
涂文广 ,2015年获南京大学物理学院博士学位。2015至2020年在新加坡南洋理工大学从事研究博士后研究工作。2020年6月起任职于香港中文大学(深圳)理工学院。主要从事于低维光电材料表界面结构的精准设计与构建,实现太阳能驱动下的小分子转换,取得了一系列重要成果,迄今为止已在Nature Communications, Advanced Material, Advanced functional Material, ACS Catalysis, ACS Energy Letters等期刊上发表论文70余篇, SCI被引超过8000次,H指数为44。
周勇 ,香港中文大学(深圳)兼职教授。2009 年9月被南京大学物理学院按海外人才引进回国工作,加入南京大学环境材料与再生能源研究中心,聘为教授。主要从事:1、人工光合成二氧化碳转化为可再生碳氢燃料;2、光电材料的设计和构建;3、高效、低成本钙钛矿太阳能电池产业化应用研究。近五年来,以第一作者或通讯作者在 国际重要期刊上发表论文超过 60 篇,其中包括 J. Am. Chem. Soc. (1 篇)、Adv. Mater. (2 篇)、Adv. Funct. Mater. (1 篇)和 Nano Lett. (1 篇),受邀以第一作者或通讯作者撰写 2 篇综述论文。近五年论文他引超过 1600 次,5 篇论文入选 Web of Science 统计的“过去十年高被引论文”, H 指数 46。光催化还原 CO2 研究成果作为主要研究内容,荣获 2014 年国家自然科学二等奖(排名第四)。主编三本英文专著(Springer 等出版社出版)。多次受邀在国内外相关学术会议上做邀请报告或主持会议。担任 Current Nanoscience 中国地区编辑和 Mater. Res. Bull.编委。主持承担国家基金委、 科技 部 973 项目等项目。入选教育部新世纪人才(2010 年)、江苏省首届杰出青年基金(2012年)。
邹志刚 ,2003年凭为教育部“长江学者奖励计划”特聘教授,国家重点基础研究发展计划“973”项目首席科学家,教育部创新团队带头人,2015 年当选中国科学院院士,2018 年当选发展中国家科学院院士。主要从事新型可再生能源与环境材料方面的研究,邹院士在光催化领域做出了卓越的贡献,被媒体称为“光催化领域的前行者”。邹志刚院士已在 Nature等国际一流期刊上发表论文 602 多篇,H指数 74,连续 5年入选爱思唯尔材料科学高被引学者,是材料领域有国际影响力的学术带头人。申请中国发明专利 200 多项,其中 83 项已获授权;承担两届国家重大基础研究计划 973 项目、国家自然科学基金中日合作项目、 科技 部国际合作重大项目等多项科研项目;获国家自然科学二等奖 1 项、江苏省科学技术一等奖 2 项,作为第一完成人获第 46 届日内瓦国际发明展金奖及阿卜杜拉国王大学特别奖各 1项。
物理学院 3年来的国内读研率 出国进修率
2011
49.25% 21.89%
2010
55.43% 28.80%
2009
41.41% 33.84%
数据来自官方,出国率不如北大与科大的物理系,出路主要是继续读研,少数的人选择了工作
南大物理系很好,上次应该是教育部学科评估的第一。
如有疑问,请继续追问
南京大学现代工程与应用科学学院里有材料工程这个专业,专业全称是材料科学与工程(专业代码080500)。
1、南京大学材料科学与工程研究方向
材料物理与化学、材料学、材料加工工程、新能源材料与器件、介电超晶格及其微结构材料与器件、介电铁电薄膜与集成器件、人工带隙材料、全氧化物异质结构与器件、纳米材料与纳米电子学、新型功能无机非金属材料、材料设计中的高性能计算、信息存储材料与器件;
光催化能源和环境材料工程、微电子互连材料与新型金属薄膜材料、聚焦离子束微加工技术、扫描和透射电镜显微术、新型复合涂层材料、微纳加工技术、原子层沉积技术、储能材料与电池工程。
2、南京大学材料科学与工程初试科目
101思想政治理论、201英语一、302数学二、839材料物理基础或848材料化学基础。
3、南京大学材料科学与工程复试科目
3402材料科学与工程专业基础综合课程(包括材料科学与工程基础、材料表征、无机非金属材料、电化学等)、3404面试。
南大在苏州校区主要的专业有:材料、新能源、电子信息、环境、生物医药、金融等方面,有本科生也有研究生。
南京大学苏州校区是南京大学四大校区之一,位于苏州高新区,占地面积约2000亩,涵盖本硕博各类层次的办学规模1.2万人(远期2万人)。依托南大苏州校区,苏州将着力打造核心区为10平方公里的太湖科学城。原南京大学独立二级学院南京大学金陵学院将在江苏省政府、苏州市人民政府支持下依托苏州校区完成转设,转设后的金陵学院通过转型提升实现与苏州校区的全面融合发展。
南京大学苏州校区重点打造人工智能与信息技术、功能材料与智能制造、化生医药与健康工程、地球系统与未来环境、数字经济与管理科学五大学科群,在建设上将坚持与其他校区“同等标准、错位发展,创新机制、国际一流”的理念,在人才引进和人才培养上将与南大同等标准 ,并对接苏州产业的现状和规划,对标世界顶尖大学,建设一批与南大南京校区错位发展的国际一流应用型学科 。
南京大学四大校区统一法人、统一代码、统一计划、统一经费,苏州校区首届招生工作2022年7月启动,所有南京大学(含苏州校区)本科新生将进入新生学院,按照同等标准、同等模式完成第一学年的基础学习,第二学年起分流至各个校区(含苏州校区)的相应学院/书院。
南大苏州校区有会计学、土木工程、物理学、金融工程、工业工程、计算机科学与技术等专业。
南京大学苏州校区是南京大学四大校区之一。苏州校区拟选址在苏州高新区,批复总面积近3000亩,其中校园规划面积1190亩。
南大苏州校区在建设上将坚持与其他校区“同等标准、错位发展,创新机制、国际一流”的理念,在人才引进和人才培养上将与南大同等标准,并对接苏州产业的现状和规划,对标世界顶尖大学,建设一批与南大南京校区错位发展的国际一流应用型学科。
新技术研发平台和产业基地
在南京大学产业技术研究院总院-苏州总院的统一规划、领导下,建设一批一流的创新技术研发平台和产业基地,加速科技成果落地与产业化,促进苏州产业技术进步和社会经济发展。
尤其是重点开展信息技术、大数据与人工智能、新能源、光电技术、生态工程、生物医学工程等国家重大科技专项领域的创新技术研发、科技成果转化、高科技企业引进与孵化、高层次人才培养。
以上内容参考:百度百科——南京大学苏州校区
有些工科专业是不属于我们大类的,比如计算机,电子,软件等等,这几个都是非常强的在全国排名都是非常靠前的,所以招生分数线一般也比较高。计算机、软件在好多人心目中就是大佬的存在啊hhh
再说属于我们大类的十个专业,
一、材料(包括材料物理,材料化学),光电信息,新能源,生物医学工程,这五个专业是属于现代工程与应用科学学院的,其中我记得没错的话材料物理应该是非常好的,今年报的人数都爆满了。
二、金融工程,工业工程,自动化,这三个专业是属于工程管理学院的。可能有人会说:“金融不是典型的商科吗,怎么又是工科了?”其实这个金融工程是偏向于结合计算机的,偏向技术,不同于我们学校商学院的金融。工业工程应该是数据优化之类的。自动化,就不用我解释了吧
一) 人工微结构科学与工程学。二) 量子调控的电子学方向的研究。 三)软物质的结构与功能。四)微结构材料设计和理论计算。 五)基于微结构的高新技术及其应用。 六)基于微结构的能源材
料研究、 七)材料制备的物理基础研
究。
新能源汽车发展潜质可以说是很好的,我从以下几点给你分析一下:
岗位需求:新能源汽车已经进入发展的快车道。车辆/设施关键技术、信息交互关键技术、基础支撑技术等领域内急需各类新能源技术人才。
发展需求:未来15年,中国汽车产业以节能汽车、纯电动和插电式混合动力汽车技术为中国汽车工业发展和转型的重点产品。新能源汽车必将得到推广应用。
市场需求:技术发展导致引用需求,我国新能源汽车核心技术达到国际先进水平,纯电动汽车成为新销售车辆的主流,公共领域用车全面电动化。
人才需求:国家政策导向有助于国内迅速形成新能源汽车配套系统产业链,行业潜力巨大,对新能源汽车人才需求量将不断增大。