建材秒知道
登录
建材号 > 能源科技 > 正文

同济大学余卓平:汽车变革时代有众多关键零部件技术急需突破

多情的萝莉
动听的煎蛋
2023-01-31 23:17:25

同济大学余卓平:汽车变革时代有众多关键零部件技术急需突破

最佳答案
无聊的心情
不安的向日葵
2025-04-05 08:50:39

同济大学教授、国家智能型新能源汽车协同创新中心主任余卓平

2021年9月3日-5日,由中国汽车技术研究中心有限公司、中国汽车工程学会、中国汽车工业协会、中国汽车报社联合主办,天津经济技术开发区管理委员会特别支持,日本汽车工业协会、德国汽车工业协会联合协办的第十七届中国汽车产业发展(泰达)国际论坛(以下简称泰达汽车论坛)在天津市滨海新区召开。本届论坛围绕“融合?创新?绿色”的年度主题,聚焦行业热点话题展开研讨。

在9月4日 “高端对话:构筑安全稳定的汽车产业链供应链”中,同济大学教授、国家智能型新能源汽车协同创新中心主任余卓平发表了题为“汽车变革时代急需产业化突破的汽车零部件关键技术”的演讲。

在演讲中余卓平表示,未来新能源汽车要获得长足发展,仍需在动力系统,尤其是分布式驱动、增程式、燃料电池和车路协同。

在余卓平看来,分布式驱动是电动化和智能化最佳的结合;增程式是解决里程焦虑的最佳方式;大功率、长距离的汽车工具将来一定走燃料电池道路。至于车路协同,单车智能并不可靠,有智能的车也必须有智能的路,也必须有智能的指挥枢纽。

以下为演讲实录:

各位来宾大家下午好,非常高兴能够在泰达论坛有机会谈一谈大变革时代,我个人围绕急需产业化突破的几个关键技术,大变革时代就不展开了,前面会长报告专门把大变革讲了一下,电动化、智能化、共享化未来。

大变革带来产业链的变化,大家可以看到,实际上我们一直讲弯道超车,应该说新能源汽车的跨越式发展确实给我们国家带来了机会,大家可以看到电动汽车领域一半的产量在中国,一半的市场在中国,而且这个链条带出来的电池产业、电驱动产业都在国际上牢牢占据一席之地。刚才董会长讲往高端走,在新能源里面都有充分的体现。

    但是我们讲电动化,下一步还要突破的技术在哪里?

第一我会把思维重新从电池里面跳跃到驱动,我一直认为实际上动力系统一直是汽车的核心,我们以前电动汽车是电池受到制约,现在电池应该跨过这一步了,下一步电池仍然会继续发展,但是我认为下一步我们应该把目光聚焦到动力系统上来。我个人认为分布式驱动是电动产业值得大家关注的,第二个我个人一直认为,电动汽车多备电池不是未来的方向,所以插电增程混动是值得大家关注的,怎么搞一个增程器要关注。

分布式驱动是电动化和智能化最佳的结合,实际上我们讲智能化里面操作控制是核心,而分布式驱动的操作控制可能是最完美的。分布式电驱动系统将来是新能源汽车的前沿关键技术,从现在电动轮的发展来看,大家可以看到在不断的突破,目前我们的密度已经能够达到每公斤两个多千瓦,并且在不断进步。当然这还不够,还需要大家进一步关注。从它的好处上来讲,首先第一个大家可以看到,现在的智能汽车都在说我要管制环境、雷达、摄像头等等,但是实质上我们开车除了眼睛感知环境,我们的所谓手感、路感也是开车很关键的东西。

目前互联网企业开始介入并推动智能汽车发展,我认为他们对智能汽车是理解不深,汽车行业应该看到未来的感知是什么呢,我们要感知路面,汽车跑在什么路上,会不会打滑,会不会出现极限工况是最关键的。电动轮知道电机的力矩,输出是什么,就是转送。什么是未知的呢?我在什么路上是未知的,用这样理论估计在什么样的路上。我们讲分布式驱动一大好处就是能够精确感知路面。第二汽车运动状态能够很准确感知,包括我们讲动力学的关键的东西,实际上通过这些力已知、运动已知做一个很准确的估计。在这样一个前提下,大家可以看到汽车行驶动力学通过分布式驱动,将得到全面的改善。第一跟传统的防滑技术相比,未来分布式驱动有可能做到根本就不会滑,就是知道什么样的路面,我力矩又可以控制,不会把力矩超出路面。甚至将来的防滑和防爆都会发生根本性质的变化,稳定性控制也是一样,现在我们的实验表明,分布式驱动全面压倒用液压制动控制行驶动力学,在防滑还有操作稳定性方面的控制。还有一个操作性的控制,现在的动力学控制里面,频繁的打方向盘,这是一个在特定工况下面经常发生的事情,如果四个轮子都能够控制力矩,实际上相当于转向控制能够明显改善方向盘的调整,确实一系列的优势使得分布式驱动需要大家高度关注,突破电动轮技术是电动化明显的改善和突破。

第二个要谈谈增程器,从400到600,现在要超过1000。作为电动汽车续航里程,这个口号隐含的东西是汽车工程师长期想克服的缺点,轻量化。轻量化是一个很重要的方向,现在为了所谓的续航里程,大家都没有轻量化的概念了。当年轻量化要轻十公斤非常困难,现在一重就是几百公斤,这个是不是方向。现在90%出行一天在五六十公里以下,如果说一百公里那可以说95%的出行在一百公里以下。为了一百公里以下,所谓的续航里程,你为什么要背两个那么大的包袱呢,那就是有里程担忧,我认为增程的办法是最好的办法。背一个小娃娃在身上,解决长续航里程。我的建议配20度电,保证每天基本就是纯电动,一旦有长续航增程,增程有三种可能,第一种可以配充电宝,我跟东风提出过,他们也试探过,十几度的充电宝跑上一段里程到下一段里程可以继续跑下去。第二就是小的增程器,你现在如果能够优化出一个专用的发动机出来做增程器,那是我们发动机行业急需干的事。三十千瓦左右的增程器,现在还没有这么好的增程器,现在非常迫切的需要,甚至燃料电池发展好,燃料电池也是一个增程器,这不就通用了。

现在大家不要把纯电动和混合动力对立起来,在这个点上大家可以看到,非常和谐的在一起。所以从成本来讲,大家可以看到,背一百度电和增程器价钱存在很大一块空间差异,至少在四万左右的成本空间。从新标杆来讲,实际上我说混合动力返璞归真。日产推出的E-power,这个就是非常简单的混合动力技术,比丰田结构简单的多,效果差不多,价格也就便宜的多。所以日产这个E-power在日本卖的非常好,我们东风要把这个技术作为新能源主流技术推,我们不是纯混合动力,我们建议把电池放大一点,让大家90%的工况就是纯电动,就是解决国家新能源的问题了,所以这个是新的标杆,技术指标不打开讲。我们在技术上探讨,如何把增程插电技术往新的方向推进,我们开发出来的一系列指标也非常好。所以第二个就是增程器希望咱们这个行业要高度的关注,未来没有国家补贴以后,不受影响,我们注意到市场能够接受好的技术,我认为这个增程器将来一定是市场能够接受的好的技术。

第三个我要谈谈燃料电池,燃料电池一直有很大的争议,大家不断的探讨,我们跳出企业来看一看,可能把燃料电池汽车发展看的更清楚。今天第一个报告,现在来看碳中和这个目标形成共识,但是要实现这个碳中和,大家都知道人员一定要转型,人员转型是往哪个方向转,低碳能源、无碳能源,可再生能源,可再生能源大规模推动离不开氢气,现在可再生能源最难点实际上上不了电网,现在风力发电、光伏发电最大的问题是给不了路条,国家电网说,因为电不可存储,来源不稳定不能这样拼命发出来。所以未来发展就开始将目光集中到氢能源,如果把氢作为中间介质,上的了网的电上网,上不了的可以制氢储存,现在氢成为下一轮能源革命的非常重要的一个焦点。在这个前提下,回过头来如果氢发展,就像石油发展以后有了汽油,有了柴油,内燃机就发展起来了。如果氢能一旦发展起来,燃料电池一定会发展起来。从这一点上燃料电池可以看到这几年随着氢能共识越来越聚焦,大家可以看到加氢站的建设也稳步的在发展。

在碳中和的目标下,我们国家最近刚刚做了一个估计,到2060年大概氢的产量达到1.3亿吨,其中1亿吨来自可再生能源。大概4000万吨可能在交通业里面,所以氢能工业交通不是大头,真正还是在工业界,工业界合成氨、甲醇都是用高碳氢气制造出来,未来一定会转换成绿色氢气做化工业产品,化工业将来占三分之二,四千万吨在我们交通领域,然后从脱碳可以看到,四千万吨在交通,大概八千万吨在我们的工业领域。另外还有一个很重要,有没有这么多的资源,让我们算了一下,可再生能源如果拿出5%-10%以来,一亿吨的制备,资源足够,一点问题没有。成本大家担心,实际上未来发展可再生能源的电,最近关注过国际上的发展,国际上发展大概一度电在光伏的产业招标里面,大概是一毛钱一度电,我们现在只要是两毛钱一度电以下,未来氢气价格基本上可以做到现在煤制氢价格圈子,所以从成本上来讲,未来发展也是可以接受的。国家在一系列政策里面,现在正在推动氢能产业发展,推动燃料电池汽车发展。

从使用场景来讲,一定是大功率、长距离的汽车工具将来一定走燃料电池道路。我们这一轮的示范城市重点放在商用车推广上,我们现在向丰田最好的技术看齐,大概一年多一点的时间。整个燃料电池自主率来看,除去个别的材料领域的关键点以外,我们基本讲自主率非常高。如果乘用车领域是网约车,现在城市公园是绿肺,如果两千辆车相当于一个大绿肺,燃料电池未来还是值得高度关注的,现在科技部司长介绍“十四五”重点推动燃料电池发展。当然一系列卡脖子的东西,大家可以看到可靠性、耐久性系统,还有车载储氢系统,等等这些东西还需要进一步突破,还需要把价格成本降下来,这是我们在燃料电池领域的观点。

最后谈谈对于智能化需要突破的技术观点,我现在个人认为,这个技术光从车上也是解决不了的,就像燃料电池从车上看不清楚,必须看到氢能产业的发展,现在智能化如果跳开整个大交通系统来看,只看车的智能化,我觉得会走入误区。汽车发展是一个机械产品,进入电子化以后是机电产品,现在是新能源产品,再下一代实际上就是智能网联产品。智能网联产品的目的要万物相联,就不能光在车上面,现在汽车的定义环境感知、还有控制操作系统,为什么现在新势力这么多,因为只有最后的车辆控制系统,这是我们汽车本行一直干的,这个环境感知人工智能原来都不是汽车界干的,所以新势力在这两块很强,自然而然也可以去做汽车了。

现在应该来讲,现在的定义是这样的,从车的角度我们定义5级的智能度,这个未来都应该要改变,因为这是从车来定义的,不是从系统来定义的。现在提出了很多的时间的实现表,现在私下很多人也在讲,如果光从车角度去看,真正无人驾驶还是任重道远,还有很长的一段时间。

现在有些车厂都推出他们所谓的量产的产品,但是实际上大家也看到,由于技术还没有完全成熟到那种程度,无论是特斯拉还是有些新势力,都面临一些在使用过程中出现的问题,所以现在我们讲面临的挑战就是因为主流的方案是盯着单车智能,单车智能现在问题在哪?第一我们讲短期覆盖不了那么多的场景和功能,现在要覆盖那么多的场景和功能不大可能,所以才会出现这么多的事故。第二环境感知,感知不到那么多你看不见的东西,感知也是有局限性,车路一体的感知可能更丰富。再一个就是深度学习,现在实际上理论由于要跑车,要多积累数据,多积累数据能够积累到深度学习形成,这是一个误区,如果按照这样去算,说你积累这些数据,将来要四百年,四百年才能够解决场景的问题,所以这个深度学习也面临非常大的挑战。再一个我个人的观点,这里面讲现在交通系统里面每一辆车都有指挥大脑,那指挥者太多效率是很难提高的,所以是需要指挥官。有警察的时候大家觉得交通体系顺畅,但是没有那么多警察。现在单车决策很难提高整体交通效力,未来要解决方案,实际上需要车路云一体解决这个问题。

这里面我们讲整个系统上来讲,有智能的车也必须有智能的路,也必须有智能的指挥枢纽。交通部在去年发布一个国家的交通战略,起了一个名字不叫智能网联,是叫做数字交通。未来交通系统,是数字车、数字路、数字云这样构成智能交通系统,怎么能够车路云一体,是在数字上是一体的。所以我们讲这个架构是构筑未来,这里关键技术、通讯技术,现在大家很多人试探5G现在用不用无所谓,但是真的未来智能交通系统起来,5G通讯数据是必须的。

路现在很多汽车公司在做高精地图,我个人持不同观点,因为我认为未来的路只有一条,不可能这个汽车厂高精地图是一张,那个汽车厂做的又是另外一张,这个不大可能。将来所有车必须走在一张图,一条路,所以将来资源要集中。

另外云端要有远程操控车的能力,整个交通体系的交通流顺畅,还有数字孪生仿真技术,不能说优化这条路,那条路就交叉堵死这个不行,所以整个交通流仿真是很重要的,整个交通系统管控都在云端实现。我们现在也在试这样的案例,车路云一体,我们正在搞一套公交系统,但是我会使得这条路上跑的智能汽车,可能跑的比地铁还快,地铁的概念就是停站不停红绿灯,所以未来希望智能化的技术大家要关注的是车路云一体的关键技术。

我的汇报就到这里,谢谢大家! 

 

最新回答
个性的舞蹈
魔幻的发带
2025-04-05 08:50:39

首先是对于实施强链基础建设项目有重要作用。鼓励龙头企业带头,聚焦氢能产业链关键环节,形成产学研协同、上下游联通的创新联合体,开展联合技术攻关,完善产业供应链对符合政策要求的企业优先纳入“强链项目”扶持项目范围给予不超过项目总投资一定比例的股权支持或预补贴支持。

其次是加快制定氢能管理有很大作用。突破体制障碍和政策瓶颈,推动氢能基础设施建设和运营行政审批制度的简化和规范,推动氢能产业尽快落地并鼓励氢能产业的发展和终端消费。从而加速氢能产业持续健康发展。充分发挥财政资金引导作用,加强金融支持,完善可再生能源制氢市场化机制,探索氢能储电耦合发展机制,加快科技创新市场化转型进程技术成果。

再者是对于构建安全可靠的氢能供应网络起着不可或缺的作用。利用我省氯碱产业副产氢资源,综合产业基础、应用场景、供应半径等因素开展就近车辆示范燃料氢供应。因地制宜开展可再生能源制氢试点,着力攻克适应动态稳定运行的绿色电力制氢技术。建设适度先进的加氢网络,坚持“站联动”,在氢资源丰富、应用场景成熟的地区优先建设加氢站,鼓励建设具有加氢功能的能源共建站。

然后是需要加快加氢站建设。优化加氢站建设审批流程,建立审批“绿色通道”、“一站式”行政审批管理制度。鼓励在新建加氢站、加油站和充电站预留加氢设施空间;如果现有的加氢站和充电站符合相关规范和安全条件,则无需办理加氢站规划选址和用地手续。经批准,现有土地可用于建设加氢站和综合能源加气站。

美满的小蝴蝶
呆萌的红牛
2025-04-05 08:50:39

一、国外研究利用现状与发展趋势

1.早期发展阶段

浅层地热能的研究与开发利用是随着热泵技术的研究与开发而兴起的。早在186年前(1824年)法国物理学家卡诺奠定了热泵理论基础。之后英国的物理学家焦耳论证了改变气体的压力引起温度变化的原理。英国勋爵汤姆逊教授首先提出了“热量倍增器”可以供暖的设想。1912年,瑞士苏黎世已成功安装了一套以河水作为低品位热源的热泵设备用于供暖,并以此申报专利,这就是早期的水源热泵系统,也是世界上第一个水源热泵系统。

在此之后的几十年,地源热泵基本处于实验研究阶段,并先后有地表水源热泵、地下水源热泵及土壤源热泵系统的问世与发展。20世纪30年代地表水源热泵系统问世,是地源热泵中最早使用的热泵系统形式之一。欧洲第一台较大的热泵装置是1938~1939年间在瑞士苏黎世市政大厅投入运行的,它以河水作为热源,供热能力175k W;20世纪40~50年代,瑞士、英国早期使用的地表水源热泵地下水源热泵系统除了用于建筑物采暖外,还用于游泳池加热和人造丝厂工艺加热和鞋厂空调等。随后欧洲其他一些国家也开始安装地表水源热泵系统,热泵系统的供热量不断增大,性能系数也有很大提高。

地下水源热泵也诞生于20世纪30年代,到1940年美国已安装了15台大型商用热泵,其中大部分是以井水为热源。1937年,日本在大型办公楼内安装了2台194k W 压缩机带有蓄热箱的地下水热泵系统,其性能系数达4.4。至20世纪40~50年代,美国应用的主要是地下水地源热泵。

1941年,第二次世界大战爆发后,影响和中断了空调供暖用热泵技术的研究和发展。二战结束后,热泵技术研究及应用逐步恢复,至1950年美国已有20个厂商和10余所大学研究单位从事热泵开发研究,在当时拥有的600台热泵中,50%用于房屋供暖。地埋管式地源热泵技术初始于美国和英国。1950年前后,两国开始使用地埋管吸收地热作为热源为家用房屋供暖的小型土壤热泵。1952年,美国约出厂1000套热泵,1954年出厂约2000套热泵。由于地源热泵的日趋成熟,有力地促进了浅层地热能的广泛应用。

1957年,美国军用基地住房大量采用热泵供暖代替燃气供热方案,热泵产量达2万套,1963年年产量增加到7.6万套。至20世纪60年代初,美国安装的热泵机组已达近8万台。但当时压缩机质量尚不过关,设备费用高而影响了热泵供暖技术的推广,开始处于停顿状态。

到1964年,热泵可靠性的问题已成为一个十分严峻的问题。60年代电价持续下降,使得电加热器的应用不断增加,限制了热泵的发展。

2.迅速发展阶段

20世纪70年代,世界石油危机的出现,又引起人们对地下水源热泵的关注与兴趣,又开始大量安装与使用地下水源热泵,热泵工业进入了黄金时期。这一时期,世界各国对热泵的研究工作都十分重视,诸如国际能源机构和欧洲共同体都制定了大型热泵发展计划,热泵新技术层出不穷,热泵的用途也在不断地开拓,并广泛应用于空调和工业领域,在能源的节约和环境保护方面起着重大的作用。

热泵真正意义的商业应用也只有近20年的历史。20世纪90年代后,随着环保要求的进一步提高,美国地下水源热泵系统的应用一直呈上升趋势。美国能源信息部的调查表明:美国地下水源热泵的生产量从1994年的5924台上升到1997年的9724台。再如美国,截止到1985年全国共有1.4万台地源热泵,而1997年就安装了4.5万台,到目前为止已安装了40万台,而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中在新建筑中占30%。目前,每年大约有5万套地源热泵在安装,其中开式系统占5%。美国热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入1亿美元从事开发、研究和推广工作。

欧洲一些国家由于采取积极的促进政策(包括财政补贴、减税、优惠电价和广告宣传等),热泵市场得到快速发展。1997年,欧洲发展基金会重新提出热泵发展计划。到2000年,欧洲用于供热、热水供应的热泵总数约为46.7万台,其中地下水源热泵约占11.75%。与美国的热泵发展有所不同,中、北欧如瑞典、瑞士、奥地利、德国等国家主要利用浅部地热资源,地下土壤埋盘管的地源热泵,用于室内地板辐射供暖及提供生活热水。据1999年的统计,在家用的供热装置中地源热泵所占比例,瑞士为96%,奥地利为38%,丹麦为27%。

3.发展趋势

近年来,各国浅层地热能的开发利用规模和发展速度都在快速增长。美国和加拿大一些大学和研究机构,对于土壤源热泵进行了较深入的试验研究,取得了一些重要数据。美国能源部(DOE)、美国环保局(EPA)及爱迪生电器学会(EEI)、国家农业电力合作公司等财团组成一家政府参与的工业设施国际集团,推广热泵供暖系统。目前从国外发展趋势看,开发利用浅层地热能,将是地热资源开发利用的主流和方向。

浅层地热能是宝贵的新型能源。与风能、太阳能等非人力控制的自然资源相比,浅层地热能是一种在开采利用时间上,可人为控制使用的可再生能源,是集热、矿、水为一体,具有洁净、廉价、用途广泛的新能源。开发利用浅层地热能可以降低常规能源消耗,减少环境污染,尤其是大气污染,又可以在发展某些相关产业经济与提高人们生活质量方面发挥作用,具有显著的商业价值。因此,引起了各国对其开发利用的重视。特别是1973年世界能源危机以来,浅层地热能的勘查与开发利用正在迅速向深度和广度发展。

4.地下水热运移数值模拟研究进展

地下水源热泵运行后,回灌井注入含水层的冷热能会在对流和热传导的作用下向抽水井运移,从而对地下水温度场产生影响,因此有必要对地下水热运移过程进行深入研究。数值模拟方法以其高效性、便捷性和灵活性等众多优势,逐渐成为研究这一问题的有效工具。鉴于此,本节对国内外地下水热运移数值模拟研究进展进行回顾,为本专题的后续研究提供基础和参考。

从20世纪70年代末开始,国外提出了许多描述含水层中热量运移的数学模型.Mercer等(1985)、Crawford等(1982)以及Mirza等对含水层储能的一些模拟技术进行了讨论。1985年.P.Heijde和Y.Bachmat等统计了当时已有的21个热运移数学模型,所有这些模型均只考虑对流和热传导作用,忽略了自然对流对热运移的影响,除了两个是三维水流耦合模型外,其余均为一维和二维的。Tsang等(1981)和Sykes等(1982)曾先后利用有限差数值模拟方法,对Auburn大学第二期地下含水层储能野外试验中水和热量运移规律进行了模拟研究,模拟结果与试验观测结果基本吻合。Buscheck等(1983)利用Aubum大学储能试验前两个周期的资料进行了二维数值模拟,并在模拟过程中考虑了自然对流的影响。Rouve等(1988)应用有限元模拟方法对德国Stuttgart大学的人工含水层季节性储能试验进行了二维数值模拟,并对含水层中各填充亚层的渗透性空间组合进行了优化。Molson等(1992)利用加拿大Ontario武装基地潜水含水层储能试验数据,对该试验过程进行了三维有限元模拟,其中考虑了自然对流影响和密度随温度的变化,该模型相对比较完整,但是试验条件比较简单,且连续性方程不尽完善。Forkeli等(1995)利用二维轴对称模型和三维有限元模型对人工含水层储能系统的储能效果进行了模拟研究,并通过对比模拟确定了效果最佳的人工储能系统。Travi等(1996)建立了二维非稳定流模型,通过数值计算给出了一个含水层剖面上温度的变化。Chevalier等(1999)应用随机游离法对多孔介质含水层储能进行了模拟研究,发现区域地下水的流动能够加速所储热能向下游含水层中扩散,从而降低所储热能的回采率。Nagano(2002)通过实验室试验和有限差分数值模拟研究得出,如果储热过程中回灌水的温度较高(>50℃),含水层中将很可能发生自然对流现象,从而使得利用含水层储能的热回收率将受到较大影响。Chounet等(1999)利用混合有限元法对土壤中水流和热量运移进行模拟,提高了模拟精度,但所用模型是一个剖面的二维模型。

国内对地热数值模拟研究始于20世纪80年代后期,张菊明等(1982)用有限元法模拟了二维地热运移问题,并给出了有限元程序。李竞生等

李竞生,王广才 1989.平顶山八矿热水补给来源及条件方式.煤炭科学研究总院西安分院科研报告.

对平顶山地温场分别建立了二维和三维温度场数学模型,并采用有限元法求解,但是此模型仅是一个稳定的模型,并没有对水流场的变化规律进行研究。薛禹群等(1987)对上海储能试验建立了三维数学模型,且考虑了热机械弥散,但水流模型是一个稳定模型,用简单的解析表达式代替水流模型,没有考虑水密度随温度的变化和水动力黏滞系数随温度的变化。张菊明(1994)建立了三维地温场数学模型并提出了有限元解法,但没有考虑水流方程。胡柏耿

胡柏耿.1995.地热田中的传热传质研究.北京:清华大学博士学位论文.

采用二维双孔隙介质模型模拟了地热田中传热和传质过程,并分别模拟了西藏那曲地热田和羊八井地热田的热质运移规律。任理等(1998)用交替方向有限差分法研究了土壤二维水热运移规律。何满潮等(2002)首先研究了地下热水回灌过程中渗透系数变化规律,然后针对单井、对井回灌过程中渗流场的动态变化建立了地热回灌渗流场数学模型,推导了渗透系数恒定与变化不同条件下的单井、对井回灌的理论公式。

国内外专家对于专门针对水源热泵的地下水热运移也进行了一定的模拟研究。Gringarten等(1975)对地下水均匀流动条件下的含水层热能采集进行了理论研究。通过对边界条件的简化和进行适当的条件假设,建立了对井系统的热传递数学模型,并利用该模型对不同给定条件下的热突破事件进行了定量评价,为法国的对井采能系统的合理布局设计提供了有效的指导。为了定量评价目标含水层系统中热量的运移特征,从而指导采能系统的设计,Wiberg应用有限单元法,对单纯的热传导和传导-对流并存两种不同假设条件下,理想含水层系统中地温场的分布特征进行了对比模拟研究。根据美国威斯康星州的供暖和制冷负荷要求,Andrews(1978)应用二维有限元模型,定量评价预测了水源热泵利用对地下温度场的影响。模拟结果表明,与区域地下水处于静止状态的情况相比,当区域地下水以一定的速度流动时,冬灌井周围的温度降幅相对较小,而影响半径有所增加,并且温度扰动带沿水流方向发生一定的偏移。Rahman(1984)通过对含水层条件进行假设,建立了对井回灌系统的模拟模型,并对不同的回灌量、含水层厚度、初始储层温度和井距影响条件分别进行了定量模拟研究。研究结果表明,除回灌量和井对之间的距离外,含水层厚度对热突破的时间影响比较显著;而含水层的储水率和渗透系数对热突破事件的影响并不显著。为了确定开采井群和回灌井群之间的合理布局,Paksoy(2000)应用CONFLOW程序,对含水层采能过程中热锋面的运移特征进行了定量模拟研究。通过限定开采井和回灌井的水位变幅,同时确保不出现热突破,最终确定上述约束条件下开采井群和回灌井群之间的最小距离。Tenma建立了一个理想的对井模型,利用FEHM软件对不同的开采与回灌量、水井滤管长度与位置和运行周期情况进行定量对比模拟。研究结果表明,前两个因素是控制模型温度变化幅度的主要影响因素。在国内,辛长征等(2002)利用美国地质调查局编写的HST3D程序,对一典型双井承压含水层的速度场和温度场进行了全年运行模拟,由于程序的限制,模拟时采用全年固定流量和固定温度的办法。周建伟等(2008)利用基于HST3D的Flowheat程序对武汉市某地下水源热泵系统进行了模拟,并对布井方式和抽灌组合的合理性进行了分析。张昆峰等(1998)模拟了大口径井水源热泵的冬季运行工作情况,结果表明,大口径井中的井水流动为均匀下降。

二、国内研究现状及发展趋势

1.早期热泵的应用与起步阶段(1949~1966年)

相对于世界热泵的发展,我国热泵的研究工作起步约晚20~30年左右。20世纪50年代天津大学热能研究所吕灿仁教授就开展了我国热泵的最早研究,1956年吕教授的《热泵及其在我国应用的前途》一文是我国热泵研究现存的最早文献。20世纪60年代,我国开始在暖通空调中应用发展热泵,并取得了一大批成果。1960年同济大学吴沈钇教授发表了《简介热泵供暖并建议济南市试用热泵供暖》;1963年原华东建筑设计院与上海冷气机厂开始研制热泵式空调器;1965年上海冰箱厂研制成功了我国第一台制热量为3720W的CKT-3A热泵型窗式空调器;1965年天津大学与天津冷气机厂研制成功国内第一台地下水热泵空调机组;1966年天津大学又与铁道部四方车辆研究所共同合作,进行干线客车的空气/空气热泵试验;1965年,由原哈尔滨建筑工程学院徐邦裕教授、吴元炜教授领导的科研小组,根据热泵理论首次提出应用辅助冷凝器作为恒温湿空调机组的二次加热器的新流程,这是世界首创的新流程;重庆建筑大学、天津商学院等单位对地下埋盘管的地源热泵也进行了多年的研究。中国科学院广州能源研究所等单位还多次召开全国性的有关热泵技术发展与应用的专题研讨会。清华大学、天津大学分别与有关企业结成产学研联合体,开发出中国品牌的地源热泵系统,已建成多个示范工程,越来越多的中国用户开始熟悉热泵,并对其应用产生了浓厚的兴趣。

我国早期热泵经历了17年的发展历程,度过一段漫长的起步发展阶段。其特点可归纳为:①对新中国而言,起步较早,起点高,某些研究具有世界先进水平;②由于受当时工业基础薄弱,能源结构与价格的特殊性等因素的影响,热泵空调在我国的应用与发展始终很缓慢;③在学习外国基础上走创新之路,为我国今后热泵研究工作的开展指明了方向。

2.热泵应用与发展的停滞期(1966~1977年)

这一时期正处于“十年动乱”期间,在此期间热泵的应用与发展基本处于停滞状态。该期间没有一篇有关热泵方面的学术论文发表和正式出版过有关热泵的译作和著作等;国内没有举办过一次有关热泵的学术研讨会,也没有派人参加过任何一次国际热泵学术会议,与世隔绝10余年。只有原哈尔滨建筑工程学院徐邦裕、吴元炜领导的科研小组在1966~1969年期间,坚持了LHR20热泵机组的研制收尾工作,于1969年通过技术鉴定,这是在“文革”时期全国唯一的一项热泵科研工作。而后,哈尔滨空调机厂开始小批量生产,首台机组安装在黑龙江省安达市总机修厂精加工车间,现场实测的运行效果完全达到(20±1)℃,(60±10)%的恒温恒湿的要求.这是我国第一例以热泵机组实现的恒温恒湿工程。

3.热泵应用发展的复苏与兴旺期(1978~1999年)

1978~1988年,我国热泵应用与发展进入全面复苏阶段。在此期间,为了充分了解国外热泵发展的现状与进展,大量出版有关著作,国内刊物积极刊登有关热泵的译文,对国外热泵产品进行测试与分析,积极参加国际学术交流。同时,一些国外知名热泵生产厂家开始来中国投资建厂。例如美国开利公司是最早来中国投资的外国公司之一,于1987年率先在上海成立合资企业。

1989~1999年期间,我国热泵又迎来了新的发展历程。在我国应用的热泵形式开始多样化,有空气-空气热泵、有空气-水热泵、水-空气热泵和水-水热泵等。在此期间国内已有国有、民营、独资、合资等不少于300家家用空调器厂家,逐步形成我国热泵空调器的完整工业体系,且水源热泵空调系统在我国得到广泛应用。据统计,到1999年全国约有100个项目,2万台地下水源热泵在运行。20世纪90年代初开始大量生产空气源热泵冷热水机组,90年代中期开发出地下水热泵冷热水机组,90年代末又开始出现污水源热泵系统。土壤耦合热泵的研究已成为国内暖通空调界的热门研究课题。国内的研究方向和内容主要集中在地下埋管换热器,在国外技术的基础上有所创新。

1978~1999年,中国制冷学会第二专业委员会主办过9届“全国余热制冷与热泵技术学术会议”。1988年中国科学院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”。自20世纪90年代起,中国建筑学会暖通空调委员会、中国制冷学会在其主办的全国暖通空调制冷学术年会上专门增设“热泵”专题交流。

1988年,中国建筑工业出版社出版了徐邦裕教授等编写的《热泵》教材;机械工业出版社1993年出版了郁永章教授主编的《热泵原理与应用》,1997年出版了蒋能照教授主编的《空调用热泵技术及应用》,1998年出版了郑祖义博士著的《热泵技术在空调中的应用》;1994年华中理工大学出版社出版了郑祖义著《热泵空调系统的设计与创新》。1989~1999年,正式发表有关热泵方面论文270篇,热泵专利总数161项,而发明专利为77项。这些教材、著作、译著和论文的出版,专利技术的应用,推动了热泵技术在我国的普及与推广。

4.热泵技术的飞速发展时期

进入21世纪后,由于城市化进程的加快,人均GDP的增长,拉动了中国空调市场的发展,促进了热泵在我国的应用,应用范围越来越广泛,热泵的发展十分迅速,热泵技术的研究不断创新。热泵的应用、研究空前活跃,硕果累累。2000~2003年,专利总数287项,是1989~1999年专利平均数的4.9倍。2000~2003年间发明专利共119项,是1989~1999年发明专利平均数的4.25倍。2000~2003年,热泵文献数量剧增,如2003年文献数是1999年文献数的5倍。全国各省市几乎都有应用热泵技术的工程实例。热泵技术研究更加活跃,创新性成果累累。在短短的几年中有3项世界领先的创新性成果问世,包括:同井回灌热泵系统,土壤蓄冷与土壤耦合热泵集成系统,供寒冷地区应用的双级耦合热泵系统。

5.地源热泵的应用与研究

我国地源热泵研究起步于20世纪80年代,首先是一些高校和科研机构对地源热泵的相关技术进行了专题研究。如北京工业大学对深层地热水进行了研究,并设计了若干垂直埋管和水平埋管的土壤源热泵试验系统;哈尔滨工业大学的水环热泵空调系统应用基础的研究与评价,土壤蓄冷与土壤耦合热泵集成系统的数值模拟与实验研究,土壤源热泵系统中地埋管的热渗耦合理论与关键技术研究;湖南大学建设了水平埋管土壤源热泵系统等。另外,青岛建筑工程学院、山东建筑工程学院、上海同济大学、天津商学院、重庆建筑大学等大学也进行了该方面的研究。近年来国内数所高等院校开展了土壤源热泵系统和水源热泵系统的试验研究,并取得了一些重要成果。

目前,我国浅层地热能的开发利用研究发展很快,经过近二十几年的研究和开发,热泵技术在我国已取得了很大进步,尤其是地源热泵技术发展迅速。已经初步建立了各类地下水源热泵系统的水源井施工技术和技术要求,井群设计和计算方法、水质评价和处理方法及环境评价方法等。

截止到2008年10月底,我国浅层地能应用面积超过1×108m2(《地源热泵》杂志2009年5月刊)。已遍及北京、上海、天津、河北、河南、山西、辽宁、四川、湖南、西藏、新疆等地。应用的建筑类型包括宾馆、住宅、商场、写字楼、学校、体育场(馆)、医院、展览馆、军队营房、别墅和厂房等,应用前景广阔。

6.浅层地热能的开发利用与发展趋势

浅层地热能的开发利用涉及城市能源结构、环境保护和提高人民生活质量的重大课题。特别是浅层地下水源热泵和土壤源热泵的可再生能量采集系统是解决上述重大课题的关键,其能量采集基本不受使用地域和四季气候的影响。浅层地热能作为建筑物的冷热源初始采集更具有推广价值。

浅层地热能的开发利用不仅受到学术界和企业界的关注,政府也更加重视。《中华人民共和国可再生能源法》明确指出:国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术发展的优先领域。国家财政支持可再生能源的资源调查、评价和相关信息系统建设。该法的实施为浅层地热能的调查、评价和开发提供了强有力的依据和保障。国土资源部、中国地质调查局等部门多次召开浅层地热能勘查开发经验交流会、技术研讨会,并编制出台浅层地热能勘查评价规范,做到了浅层地热能勘查开发有标准可依。近年来,随着国家加大建设“资源节约型、环境友好型”社会的力度,实现节能减排目标,国家从中央财政安排专项资金用于支持可再生能源建筑应用示范和推广,财政部、建设部已批准下达3批包括浅层地热能利用的可再生能源建筑应用示范推广项目。各地也相继出台支持开发利用浅层地热能项目。如2006年5月31日,由北京市发改委联合市水利局、国土局等9个委办局联合发文对采用地下水源热泵系统实现供暖和制冷项目按每平方米35元的标准进行补贴,对采用地源热泵系统实现供暖和制冷项目按每平方米50元的标准进行补贴;沈阳市发布的《关于地源热泵系统建设和应用工作的实施意见》中要求在沈阳市三环内的455km2核心区范围内,对符合应用地下水热泵技术的409km2范围内的建筑物,原则上都要采用地下水源热泵技术规划研究。

进入21世纪,伴随中国经济的迅速发展,人们对生活品质和舒适性要求的不断提高,城市能源结构的改变,建筑市场的巨大,为浅层地热能开发利用技术的推广创造了前所未有的机遇。国内在热泵理论研究、试验研究、产品开发和工程项目的应用诸方面都取得了可喜的成果。

目前,我国已经建立了比较完善的开发利用浅层地热能的工程技术、机械设备、监测和控制系统,但回灌技术中的水质控制和回灌对储层及用水管的影响评价,堵塞井的处理技术,对井群采灌系统温度场、化学场和压力场的模拟计算方法,参数采集方法等尚在研究之中。

玩命的火车
温婉的钢铁侠
2025-04-05 08:50:39

作为重要智库成果发布平台,10月22日上午,2020浦江创新论坛联合中国科学技术发展战略研究院、 科技 部新一代人工智能发展研究中心、中国科学技术信息研究所、上海市科学学研究所、施普林格·自然集团、同济大学、上汽集团等多家机构发布了《中国新一代人工智能发展报告2020》、《全球前沿技术发展趋势报告》、《2020“理想之城”——面向2035年的全球 科技 创新城市调查报告》和《氢能源未来发展趋势及研发应用》等一系列智库研究成果。

同济大学与上汽集团合作研究形成的《氢能源未来发展趋势及研发应用》,展望了氢能在未来能源结构中的地位,详细讲解了中国氢能发展现状和未来,还为我们展示了一批中国氢能研发应用成果。一起来看

01 氢能在未来能源结构中的地位

根据报告研究,在气候变化对全球减碳提出迫切需求、可再生能源引导全球能源变革的背景下,可再生能源与氢能将助力深度脱碳,在当前政策下,如果可再生能源能够加速普及,在2050年全球或可实现90%以上的与能源相关的二氧化碳减排;而根据国际氢能委员会2050年氢能愿景,氢能在终端能源需求所占比例将达到18%,欧洲氢能路线图2050年氢能愿景中这一比例则达到了24%。

02 中国氢能发展现状和未来

我国是世界第一产氢大国,具有丰富的氢源基础,能够为燃料电池 汽车 的发展提供保障;同时由于我国正处于能源转型关键期,对减碳也作出了庄严承诺:将于2030年左右使二氧化碳排放达到峰值并争取尽早实现,2030年单位国内生产总值二氧化碳排放比2005年下降60%-65%,非化石能源占一次能源消费比重达到20%左右;采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。

因此,目前我国出台了一系列对氢能发展的政策,地方政府也陆续发布发展规划。当下,我国燃料电池 汽车 总保有量超过7000辆,疫情和政策变动对今年产销影响较大,城市群示范开启后,产销会出现快速增长;根据研究报告,燃料电池商用 汽车 是重要发展方向,拥有潜力巨大的市场。而在加氢站建设方面,我国也已建成超过90座加氢站。同时,在在氢能和燃料电池产业链上,我们也要清醒得认识到国内与国外的一些差距。

根据中国氢能联盟对氢能产业的愿景,2019年我国氢能源比例为2.7%,近期目标是于2020年-2025年提升至4%,中期目标是在2026年-2035年升至5.9%,远期目标是在2036年-2050年将其提升至10%。

那么,现在就能用上氢能源么?

小科带你看

03 中国氢能研发应用成果

朴素的鲜花
烂漫的蜗牛
2025-04-05 08:50:39

易车讯 3月29日,长城汽车氢能战略全球发布会在保定哈弗技术中心正式举办,长城汽车董事长魏建军、轮值总裁孟祥军、副总裁穆峰,长城未势能源董事长张天羽、总裁陈雪松等长城汽车的多位领导,与来自政府机构以及能源、环保、经济、金融、汽车等各领域的近百位领导、专家、学者共同出席发布会,见证这一历史性时刻。

长城汽车氢能战略全球发布会

长城汽车氢能战略,不仅构建了国际级“制-储-运-加-应用”一体化供应链生态,打破核心技术壁垒,还联通上下游产业链,加速氢能商业化推广。此外,氢能战略还推出了一套国际领先的车规级“氢动力系统”全场景解决方案—氢柠技术,加速产品落地,助力我国能源结构转型。

剑指全球前三 构建国际级“制-储-运-加-应用”一体化供应链生态 

作为拥有丰富风能、太阳能等资源的可再生能源第一大国,如何充分利用可再生能源,科学、合理的获取氢能、使用氢能,将成为我国未来可持续发展的关键。

长城汽车副总裁 穆峰

面对能源结构的变革,长城汽车深度聚焦“绿色+智慧”的出行理念,以“构建永续美好的氢能社会”为终极目标,正式发布氢能战略。在发布会现场,长城汽车副总裁穆峰表示:“如果,我国氢燃料电池汽车推广可达成100万辆的目标,一年可减少二氧化碳排放5.1亿吨,这将极大助力碳中和目标实现。”

长城汽车氢能战略正式发布

长城汽车氢能战略涵盖了国际级“制-储-运-加-应用”一体化供应链生态,同时推出一套国际领先的车规级“氢动力系统”全场景应用解决方案---氢柠技术。

依托于氢能战略,长城汽车将采取“商乘并举”的模式,通过场景探索带动技术及产业发展,加速产品落地。长城未势能源董事长张天羽表示:“今年,长城汽车将推出全球首款C级氢燃料电池SUV,并在全球率先完成100辆49吨氢能重卡应用项目落地;2022年,首支高端乘用车服务车队将出现在冬奥会的舞台上;2023年实现核心动力部件推广数量国内领先,2025年剑指全球氢能市场占有率前三。”

立足于氢能产业下游核心零部件和技术研发,长城汽车坚持以产品为王,向上探索核心材料联合合作模式,向下利用示范运营进行产品应用迭代升级,通过积极拓展场景应用,整合内外部产业链最优质资源。

国际级“制-储-运-加-应用”一体化供应链生态

在研发投入上,长城汽车将再投入30亿元用于氢能领域研发,以达到万套产能规模。同时,长城汽车广纳贤才,汇聚来自欧美日等多国超十年氢能技术研发经验的外籍专家,打造国内最大的氢能技术研发团队。此外,长城汽车还构建了“四国五地”全球化研发体系,为突破氢能核心技术打下坚实基础。

“四国五地”全球化研发体系

目前长城汽车已经实现“电堆及核心组件、燃料电池发动机及组件(控制器等)、Ⅳ型储氢瓶、高压储氢阀门、氢安全、液氢工艺”六大核心技术和产品的知识产权完全自主化,多项技术均突破了“卡脖子”的行业痛点,致力于通过技术进步,助推氢能社会到来。

   在产业链上游,长城汽车新一代钙钛矿太阳能光伏技术,拥有打破世界纪录的20.01%光电转换效率,标志着大面积钙钛矿光伏组件转换效率正式迈入“2.0时代”。大规模储能应用方面,业内领先的氢+电储能系统,为规模化可再生能源存储提供解决方案,为移动和固定式能源综合利用奠定基础。

国内唯一氢能全产业链核心技术布局

在产业链下游,长城汽车已加入京津冀、长三角、河南、河北四大示范试点城市群,示范车辆规划超过千台,涉及乘用车、重卡、物流、公交,船舶、轨道交通等多种应用场景,绘制更为广泛的市场蓝图。

“1+3+5” 长城汽车氢柠技术实现全场景应用

长城汽车氢柠技术是一套国际领先的车规级“氢动力系统”全场景解决方案,总结为“1+3+5”, 即1整套车规级研发体系,3大技术平台和5大性能优势,是长城汽车氢能战略的技术核心支柱,也是长城汽车柠檬平台核心技术路线之一,涵盖了氢燃料电池系统、车载储氢系统及核心关键部件。

国际领先的车规级“氢动力系统”全场景解决方案-氢柠技术

1整套车规级研发体系是氢柠技术的根本,它包含100多项企业标准,500多项硬件需求,5000多项软件需求,数千项检测和数万次试验。并可根据氢能整车需求从上至下快速定义、分解、仿真和设计燃料电池发动机系统、零部件和材料,并通过试制试验从而确保产品的高性能、高质量和低成本。

1整套车规级研发体系

氢电平台(HE)、电堆平台(HS)、储氢平台(HP)3大技术平台是氢柠技术的核心。其中氢电平台(HE)具有可靠性、耐久性,安全性,环境适应性、大功率,高功率密度的特点。电堆平台(HS)已开发完成第一代单堆额定功率150kW,峰值功率160kW燃料电池金属板电堆,功率密度达到4.2kW/L以上。储氢平台(HP)包括70MPa IV型储氢瓶、70MPa瓶口阀和减压阀,以及储氢系统的集成和控制。

3大技术平台

长城未势能源总裁陈雪松表示:“未来五年,长城汽车将重点围绕燃料电池系统全面走向‘五高’,即:高功率(>200kW),高效率(>60%),高温度(>100℃),高耐久(>20000小时)和高互联(新能源+智能网联)。” 

5大性能优势

在氢柠平台的加持下,长城汽车在氢能产业价值链的核心技术和关键环节,实现了燃料电池系统、电堆、膜电极、空压机、氢气循环系统、储氢系统及关键部件等多方面核心技术的实质性突破,支撑氢燃料电池汽车真正实现高效率、高性能、长续航、全气候行驶和全领域应用。

开放共赢 多方合作共推氢能规模化应用

“一人难成众,孤木不成林。”

在氢能战略的指导下,长城汽车秉持“开放、合作、共赢”的理念,全面开放平台技术,共享产品与服务,与行业上下游优质企业协同互补,在研发、测试,零部件配套,投融资,产能建设等业务开展全方位合作。

长城汽车与中国质量认证中心共同进行“碳中和认证评测”

未势能源与同济大学签订战略合作协议

发布会上,长城汽车携手中国质量认证中心共同进行“碳中和认证评测”,并与同济大学共同建立氢能与燃料电池技术服务联合研究院,为氢能产业的快速发展汇聚最坚实的技术力量。

懦弱的龙猫
清爽的奇异果
2025-04-05 08:50:39

能源与动力工程学校前二十:西安交通大学、清华大学、上海交通大学、华中科技大学、天津大学、中国科学技术大学、哈尔滨工业大学、华北电力大学、东南大学、重庆大学、大连理工大学、北京理工大学、北京航空航天大学、同济大学、北京科技大学、西北工业大学、哈尔滨工程大学、华东理工大学、华南理工大学、武汉大学。

拓展资料

2012年将'热能与动力工程”"能源工程及自动化"“能源动力系统及自动化"和“能源与资源工程”(部分),合并为“能源与动力工程”专业。能源与动力工程包括两部分:一是能源,- 是动力。能源是指能够直接取得或者通过加工、转换而取得有用性的各种资源,包括煤炭、原油、天然气、水能、核能、风能、太阳能、地热能、生物质能等,以及其他新能源和可再生能源。动力则是研究如何将各种能源转化成我们需要的力量。

动力技术包括很多,如锅炉、内燃机、航空发动机、制冷及相关技术等。简单来说,能源与动力工程专业研究的就是如何安全、清洁、高效地转换能源,并且应用它们来产生动力供人们使用。

能源动力是经济和社会发展的重要物质基础。能源动力工程直接关系到国民经济的发展和人民生活水平的高低,所以相关专业的就业率也长期居于高位。在专业名称未调整之前,“热能与动力工程”专业连续多年就业率处于90%-95%区间(据阳光高考平台数据)。

靓丽的飞机
高贵的大门
2025-04-05 08:50:39

[汽车之家 行业]? 在氢燃料电池汽车领域,似乎形成了这样一种默契:囿于政策、技术、成本和商业模式等多个因素,我国优先发展氢燃料电池商用车,氢燃料电池乘用车则被看作“储备性”路线,多年来不温不火。

即便早在12年前,我国就有氢燃料电池乘用车亮相,但是它们始终没有被投向市场,甚至连“试错”的机会都没有。难道,氢燃料电池乘用车在中国市场没有前景吗?未必如此。

沉寂多时的氢燃料电池汽车领域,正迎来一次产业小高潮。近两月来,长城、广汽、宝马等多家整车企业陆续发布氢燃料电池乘用车相关规划。其中,广汽将在2020年内开展示范运营。多年来在商业化道路上缓速发展氢燃料电池乘用车,开始进入实质性运营阶段。

■ 燃料电池乘用车产业“小高潮”

中国氢燃料电池汽车这次“挣”回了一些面子。

此前,氢燃料电池乘用车先发优势似乎都在国外企业。2014年12月,丰田汽车推出首款量产氢燃料电池轿车丰田Mirai。彼时,丰田汽车公司Mirai燃料电池车开发负责人田中义和称,丰田之所以在2014年底将Mirai推向市场,与日欧美等国对氢燃料电池汽车达成共识有关。同时,相比2008年,氢燃料汽车开发成本降低了95%。

2015年前后,日韩系和欧美系车企不断公布氢燃料电池乘用车。严格来算,早在2013年12月,现代就推出量产现代ix35 FCV车型;2016年本田推出CLARITY车型;2017年戴姆勒也推出全新氢燃料申池GLC-CELL概念车。

『丰田Mirai』

反观中国车企,则没有像丰田、现代和本田那样开展实质性进展。2014年上海车展,上汽亮相第四代荣威950插电式燃料电池汽车,最大续航里程400km。2016年,奇瑞在国家“十二五”科技创新成就展上,展示了一款艾瑞泽3燃料电池增程电动车,增程模式下可实现续航350km。不过,这仅是上汽和奇瑞的技术性展示。

2020年到来,中国车企在氢燃料电池乘用车领域的不同以往的动作,让人感受到了一波产业“小高潮”。

在不到一个月时间里,三家整车企业陆续发布氢燃料电池乘用车规划,并提出量产车型上市计划。7月20日,长城汽车发布“柠檬”平台。“柠檬”平台车型将匹配第二代氢燃料电池动力系统,续驶里程可达1100km。根据规划,长城汽车首款氢燃料整车平台将在今年年内推出,并于2022年展示小批量氢能源车队,2023年推出成熟的燃料电池乘用车车型。

『广汽新能源Aion LX Fuel Cell在广汽科技日首发亮相』

广汽也紧随其后。7月28日,广汽首款氢燃料电池车Aion LX Fuel Cell在广汽科技日首发亮相。而这款车型也不单纯是展示车,广汽计划在今年年内投入示范运营。

造车新势力中也有燃料电池技术的簇拥者。8月10日,爱驰汽车在山西高平举办甲醇重整制氢燃料电池技术奠基仪式,旗下甲醇氢燃料电池动力系统生产基地正式动工。工厂投资额20亿元,建成后可实现年产8万台/套甲醇制氢燃料电池动力系统。

除了上述企业之外,初步统计,包括海马、云度、红旗、上汽大通、长安等车企都开始在氢燃料电池汽车领域进行布局。可以说,从氢燃料电池乘用车领域布局情况来看,目前中国车企数量最多。这会是中国氢燃料电池乘用车崛起的开始吗?

■ 为什么要搞燃料电池乘用车?

首先回答这个问题:为什么一定要搞氢燃料电池汽车。

我们来看看我国面临的能源问题。有几组数据:一、目前我国70%和40%以上的石油、天然气都依赖进口;二、2019年我国碳排放量占全球29%;三、我国可再生能源占比约为14.86%,“三弃”(弃风、弃光、弃水)规模约为515亿度电;四、我国燃煤发电效率水平在38%-45%之间,2018年国内生产总值能耗约为0.506吨标准煤/万元,是世界平均水平的1.5倍。

中国曾向世界承诺,2030年碳排放量将达到峰值。如何完成这个承诺?发展氢能产业是实现去碳的有效途径。当氢与氧发生反应之时,最终生成的便是水,无碳、无色、无味。

从大战略上来看,“去碳从氢”是未来必然趋势。当然,落实到具体产业,具备规模化优势的氢燃料电池汽车产业必不可少。如果没有氢燃料电池汽车产业的带动,中国要兑现2030年承诺,恐怕要打一个折扣。

再看看燃料电池汽车的优势。氢燃料电池汽车(Fuel Cell Vehicle,FCV),简而言之就是以燃料电池产生的电能为驱动力的新型电动汽车。相比传统汽车,FCV具有对环境零污染,加氢只需几分钟,续航里程足以满足用户需求。仅从产品本身来看,FCV优势十分突出。

其实,中国车企也从来没有忽视过氢燃料电池汽车的发展。2008年开始,中国车企就在氢燃料电池乘用车领域不断投入。上汽、奇瑞、一汽、北汽、长城、爱驰等车企都展示过燃料电池乘用车产品。初步统计,2008年以来,国内市场先后出现20多款燃料电池乘用车。

我国氢燃料电池汽车产业集中在商用车领域,也是不争的事实。同济大学燃料电池汽车技术研究所所长章桐教授如此解释,从技术角度来说,在燃料电池汽车产业链技术还不太成熟的时候,发展商用车难度相对较小。乘用车对相关零部件技术成熟度要求更高,推进难度也更大。

另一个原因便在于国家政策导向。氢燃料电池汽车示范运营集中公共交通、物流板块,这样国家管控难度较小,从补贴角度来看也更容易操作。再加上地方政府力量的介入,公交车这样的区域性、公共属性强的产品,更成为重点支持的对象。

因此,有人认为我国乘用车更适合走纯电技术路线,大可不必发展氢燃料电池乘用车。

这个观点有失偏颇。我们从商、乘车型占比来看,截至2020年6月,我国汽车保有量达到了2.7亿辆,其中载货汽车仅为2944万辆,即使再加上公交车辆,商用车保有量占比也不高。

如果氢燃料电池汽车产业仅拓展到商用车领域,那么整体市场容量将十分有限,这对我国节能减排贡献度远远不够。其次,未来加氢站基础设施利用率也会偏低。再则,氢燃料电池技术能否经得起考验,也必须深入私人消费领域。

从国际经验来看,氢燃料电池乘用车的市场成绩也有目共睹。2015年以来,韩国氢燃料电池乘用车销量持续上涨,2018-2019年期间更是大幅增长,其中2018年同比增长达到509.8%;2019年销量突破4000辆。日本氢燃料电池乘用车销量则在2017、2018年下滑后,2019年实现回升,2020年也将预计处于稳定回升趋势之中。

我们再以现代Nexo氢燃料电池车型销量数据为例,2018年,现代共计售出966辆Nexo;2019年达到了4987辆;2020年上半年销量为3292辆。现代汽车方面预计,该款车8月销量或将超过1万辆。

『现代Nexo将会是全球第二款销量过万的氢燃料电池乘用车』

这么来看,氢燃料电池乘用车走向市场,虽然暂时还不能称之为成功,但也算小有成就,至少获得了一次经受市场检验的宝贵机会。

■ 氢燃料电池乘用车瓶颈在哪里?

当然,发展氢燃料电池乘用车并非易事。

戴姆勒不久前就宣布,终止氢燃料电池乘用车研发计划。这意味着,这项自2013年起与福特和日产公司合作开发的项目宣告停止。戴姆勒放弃燃料电池项目,核心原因就是制造氢燃料电池乘用车的成本太高。

横亘在氢燃料电池乘用车的第一道难题就在于成本。乘用车作为直面消费者的产品,价格是决定其购买的重要原因。有机构对氢燃料电池汽车造价进行了初步统计,一辆燃料电池车的价格是锂离子电动车的1.5倍到2倍,是燃油车的3-4倍。如果氢燃料电池乘用车成本依旧居高不下,未来也将很难有市场。

基础设施是氢燃料电池乘用车面临的第二道障碍。如果未来由于加氢站布局不足,是不是也会出现类似纯电动汽车的充电难问题呢?截至目前,我国运营中的加氢站有59座,建设中的加氢站53座,规划建设中的加氢站20座,推动非常缓慢。

技术问题当然也不容忽视。同济大学汽车学院副教授马天才说,从产业链上看我国氢燃料电池发展,整车水平、系统水平和国外差距不大,不过越靠底层的关键材料越薄弱。

比如,电堆占氢燃料电池系统总成本25%以上,其核心材料几乎全部依赖国外厂家;在催化剂领域,国内消耗量是国外3-5倍,且主要来自国外企业,国内仅有几家企业可小批量生产;此外,质子交换膜、膜电极等,都主要依赖国外企业供应。

不过,我们认为氢燃料电池乘用车产业迎来了春天。上海重塑能源科技有限公司董事长兼CEO林琦把全球燃料电池汽车的发展大致分成三个阶段:

第一阶段是燃料电池乘用车的开发阶段,包括丰田、本田、奔驰等乘用车企业牵头的燃料电池技术开发,为燃料电池技术的发展奠定了良好的基础,实现很多技术难题的突破。

第二个阶段为燃料电池商用车的开发阶段。过去三四年时间里,全球范围尤其是在中国市场,燃料电池商用车保持快速增长。无论是整车企业还是零部件企业,大家都把目标和未来逐渐看向了长续航、高重载的商用车方向。

第三个阶段,也就是从2020年起,是燃料电池汽车新征程的开始。氢能应用在全球的发展趋势逐渐明朗,商业化的场景已逐渐实现落地,且在持续开拓过程中。

为什么说氢燃料电池汽车发展走向了新阶段?林琦从四个维度解释,第一个维度是壳牌、英国石油公司、中石化、中石油等能源端企业进入氢能行业,着手基础设施建设;第二个维度是从产品端看,多家主流汽车公司、零部件公司也开始着手产品规划;第三个维度是从应用场景端看,越来越多氢能商业化公司也纷纷入局;第四个维度来自于政府政策和扶持计划。

可以肯定的是,我国氢燃料电池乘用车发展形势正在向好。2020年新能源汽车补贴政策中,针对燃料电池汽车采取“以奖代补”方式,对示范城市给予奖励。《广州市氢能产业发展规划(2019-2030)》中就提及,广州市燃料电池乘用车将主要在出租车、租赁等公共出行领域进行投放,并计划在2022年达到百辆左右投放数量。

从近期来看,氢燃料电池乘用车示范性运营,或者采用租赁形式进行推广,将是一个合理选择。长期来看,随着示范运营规模逐步扩大,成本进一步下降,氢燃料电池乘用车走向普通消费者,只是时间问题。

尽管如此,这一切也不会来的那么快。按照章桐的预测,氢燃料电池乘用车要达到一定的规模,还需要5年左右的时间。也就是说,至少要5年左右时间,消费者才有可能小规模购买。(文/汽车之家 李争光)