建材秒知道
登录
建材号 > 能源科技 > 正文

为什么把太阳能列为可再生能源

复杂的白云
寂寞的高跟鞋
2023-01-31 19:42:10

为什么把太阳能列为可再生能源?太阳能会有用完的一天吗?

最佳答案
怕孤独的大米
贪玩的母鸡
2025-04-21 08:43:54

我可能知道这个朋友的疑问。就是太阳会永远燃烧,给人类带来能量吗?一百年,一亿年,可以吗?可以是1亿年,可以是100亿年吗?当然不是。因为太阳的寿命是100亿年,已经过了50亿年。从现在开始只有50亿年。当然,不能让人类再生100亿年的能源。

但是这确实是一个钻牛角尖的问题。用现在流行的话就是“精峰”。

我们现在说的可再生能源只是指在可预测的时间不会枯竭。可再生能源是指风能、太阳能、水能、生物质能、地热、海洋能等非化石能源,是取之不尽的能源,与取之不尽的可再生能源相比,对环境的危害或危害非常小,资源分布广泛,适合当地开发利用。所以太银行能属于可再生能源,

可再生能源包括太阳能、水力、风能、生物质能、波浪能、潮汐能、海洋温差能、地热等。

可以在自然中循环播放。是无穷无尽的能源,在没有人力参与的情况下可以自动再生,是相对于无穷无尽的非再生能源的能源。

这个世界只是相对的“永远”,没有什么是永恒的。

宇宙也有寿命。我们现在知道它的出生日期。大约百亿年前的某一天,关于它死亡的时间,也有人说空谈是有道理的,没有统一的看法。每天早上太阳从东方升起,每天晚上太阳从西方落下,这样不断产生已经过了数十亿年,孕育了生命和人类,现在没有不持续的迹象。太阳能是巨大的可再生能源。

太阳每秒向太空释放3.78x10 26J的能量,地球除以22亿分之一的这个勺子,得到1.72x10 17J,每平方米约1300瓦的光,总量达到480亿度,是1500万个三峡大坝发展总量,或每秒3000多个广岛原子弹爆炸的能量,这种能量每天每时每刻都发生,即使是阴天,这种能量也在云层上空辐射。如果太阳不打那个喷嚏就炸了地球,这种光就会持续下去。至少一亿年不会改变。

最新回答
无心的棒棒糖
无限的电话
2025-04-21 08:43:54

巨大的太阳能发电站漂浮在太空,将无数能量辐射到地球。这个概念,听起来像是科幻小说中的场景,其实是由俄罗斯科学家康斯坦丁·齐奥尔科夫斯基在上世纪二十年代首次提出。一直以来,它也确实是许多科幻作者的灵感来源。

但是,一个世纪后,科学家为实现这个概念已经取得了巨大的进步。欧洲航天局已经意识到这些工作的潜力,同时也在为这些项目寻求资金,并预测我们从太空获得的第一种工业资源将是“光束能量”。

气候变化是我们这个时代面临的最大挑战,因此风险也非常之大。从全球温度上升到气候模式改变,气候变化已经影响到全世界的每一个人。克服这一挑战需要我们彻底改变生产和消耗能源的方式。

最近几年,可再生能源技术发展迅速,效率更高、成本也更低。但是采用可再生能源的一个主要障碍在于,它们无法持续提供能量。风力发电场和太阳能发电场只有在风使劲吹或太阳当空照的时候才能产生能量,但我们每一天每一小时都需用电。因此,我们在普及可再生能源之前,首先得找到一种大规模存储能量的办法。

解决这个难题的一个可行办法或许是在太空中产生太阳能。这种方式有很多优点。一个太空太阳能发电站可以一天24小时面朝太阳运行。地球的大气层也会吸收并反射部分太阳光。所以,大气层上方的太阳能电池可以接收更多太阳光并产生更多能量。

但是问题又来了:我们该如何组装、发射和部署如此庞大的结构呢?单个太阳能发电站的面积可能至少要达到10平方公里,相当于1400个足球场那么大。其次,使用轻型材料也至关重要,因为届时最大的成本将是用火箭将发电站送入太空。

一个建议的解决方案是开发成千上万个小的卫星。这些卫星聚集在一起,通过配置可以组装成一个大型的太阳能发电机。2017年,加州理工学院的研究人员曾提出过模块化发电站的设计。该发电站由数千个超轻太阳能电池块组成。研究人员还展示了一块每平方米仅280克的原型电池块。

最近,制造业的发展成果——如3D打印等,也有望用于太空太阳能发电站的开发。在利物浦大学,研究人员正在 探索 新的制造工艺,以将超轻太阳能电池打印到太阳能帆上。这个太阳能帆是一种可折叠、轻便又具有高反射率的薄膜,可以利用太阳的辐射压力作用,推动航天器前进,而不再需要燃料。研究人员也在 探索 如何将太阳能电池嵌入太阳能帆结构上,以制造大型、无需燃料的太阳能发电站。

这些方法可以帮助我们在太空中建造发电站。事实上,未来有一天,我们或许可以在国际空间站或未来的绕月球轨道运行的门户站制造和部署发电站装置。

可能还不至于此。尽管我们目前依赖地球上的材料来制造发电站,但科学家也在考虑利用太空中的资源(如月球上发现的材料)直接开展加工制造工作。

上述问题解决后,剩下一个主要挑战是如何将能源传输回地球。当前的计划是将太阳能电池中的电能转换为能量波,然后用电磁场将能量波传输给地球表面的天线。天线进而将能量波变回电能。日本航空航天局的研究人员已经开发了几种设计,并演示了一个可以实现这些功能的轨道系统。

即便如此,在这个领域我们还有许多工作要做。但我们的目标是,太空中的太阳能发电站将在未来数十年成为可能。中国的研究人员已经设计了一个名为欧米伽(Omega)的系统,预期可以到2050年投入使用。该系统在最佳性能状态下,可以向地球电网提供2GW的电力。如果是在地球上用太阳能电池板产生这么多电能的话,那将需要600多万块太阳能电池板。

但是,诸如为月球登陆器供电而设计的更小的太阳能卫星,可以更早地投入使用。如今,全球科学界都在投入大量时间和精力,来开发太空太阳能发电站。我们希望,终有一天,它们可以成为我们应对气候变化的重要工具。(匀琳)

健忘的烤鸡
神勇的大炮
2025-04-21 08:43:54

可再生能源的五种有:

1、太阳能发电

太阳能是一种可再生能源,五千多年来,一直在人类的生产生活中发挥巨大作用。随着时间的推移,太阳能的用途发生了很大变化,从取暖到为太空中的卫星供电。

但是,目前家庭房屋和各类建筑中,仍然缺乏能效高且价格低廉的太阳能发电设备。

太阳能电池板的工作方式非常简单,它是由数百万个太阳能电池组成的面板。当太阳照射到这些电池板时,通过吸收太阳光,将太阳辐射能通过光电效应或者光化学效应直接或间接转换成电能。

这些电能可以为家庭供电,并且价格十分低廉。

2、风力发电

人们看向大海时,会发现海平面上有很多风力涡轮机。虽然它们可能不是最吸引人的,但它们效率非常高。因为欧洲和一些地区有绵延不绝的海岸线,所以风力发电在这些地方比较普遍。

风力涡轮机就像喷气发动机的进气口。当空气进入时,首先会遇到一套固定的叶片,它能把空气引导进一套可转动的叶片。

空气推动叶片并出现在另一边,此时空气流动的速度比在涡轮机外流动的速度更慢。遮蔽物做成合适的形状,以便其引导在外面相对流动较快的空气进入转子后面的区域。

快速流动的空气加速缓慢移动的空气,使涡轮机叶片后的区域变成低气压,以吸纳更多的空气通过它们。

3、水力发电

水力发电系利用河流、湖泊等位于高处具有势能的水流至低处,将其中所含势能转换成水轮机之动能,再借水轮机为原动力,推动发电机产生电能。水的高度,水的重量,甚至水的流动速度都可以用来发电。

地球上有大量的河流和不同类型的水流,这意味着我们可以大量安装水力发电站。

4、生物质能

生物质能的应用在日常生活中越来越普遍。生物柴油可以为汽车、公共汽车和商业车辆提供动力;生物质发电机可以提供家庭用电,此外,人们每天都发现新的生物质能。

5、地热能

地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。

因为放射性粒子会慢慢衰变,所以地热能是一种可再生能源。并且只要地球还在旋转,地热能就会一直存在,完全不用担心它们会耗尽。

端庄的红酒
甜美的高山
2025-04-21 08:43:54
太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。

二十世纪50年代,太阳能利用领域出现了两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。

70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,1980年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在70年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。

太阳内部进行着剧烈的由氢聚变成氦的热核反应,以E=MC2 (M为物质的质量,C为光速)的关系进行质能转换(1克物质可转化为9´ 1013焦耳能量),并不断向宇宙空间辐射出巨大的能量。太阳每秒钟向太空发射的能量约3.8´ 1020 MW,其中有22亿分之一投射到地球上。投射到地球上的太阳辐射被大气层反射、吸收之后,还有约70%投射到地面。尽管如此,投射到地面上的太阳能一年中仍高达1.05´ 1018kWh,相当于1.3´ 106亿吨标煤,其中我国陆地面积每年接收的太阳辐射能相当于2.4´ 104亿吨标煤。按照目前太阳质量消耗速率计,太阳内部的热核反应足以维持6´ 1010年,相对于人类发展历史的有限年代而言,可以说是“取之不尽、用之不竭”的能源。

地球上太阳能资源的分布与各地的纬度、海拔高度、地理状况和气候条件有关。资源丰度一般以全年总辐射量(单位为千卡/厘米2·年或千瓦/厘米2·年)和全年日照总时数表示。就全球而言,美国西南部、非洲、澳大利亚、中国西藏、中东等地区的全年总辐射量或日照总时数最大,为世界太阳能资源最丰富地区。

三、地热能

一、地热资源概念

地热资源是指在当前技术经济和地质环境条件下,地壳内能够科学、合理地开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组分。

地热资源按其在地下的赋存状态,可以分为水热型、干热岩型和地压型地热资源;其中水热型地热资源又可进一步划分为蒸汽型和热水型地热资源。

各种类型地热资源,均要通过一定程序的地热地质勘查研究工作,才能查明地热资源数量、质量和开采技术条件以及开发后的地质环境变化情况。从技术经济角度,目前地热资源勘查的深度可达到地表以下5000m,其中2000m以浅为经济型地热资源,2000m至5000m为亚经济型地热资源。资源总量为;可供高温发电的约5800MW以上,可供中低温直接利用的约2000亿吨标煤当量以上。总量上我国是以中低温地热资源为主。

二、成生与分布

地热资源的成生与地球岩石圈板块发生、发展、演化及其相伴的地壳热状态、热历史有着密切的内在联系,特别是与更新世以来构造应力场、热动力场有着直接的联系。从全球地质构造观点来看,大于150℃的高温地热资源带主要出现在地壳表层各大板块的边缘,如板块的碰撞带,板块开裂部位和现代裂谷带。小于150℃的中、低温地热资源则分布于板块内部的活动断裂带、断陷谷和坳陷盆地地区。

地热资源赋存在一定的地质构造部位,有明显的矿产资源属性,因而对地热资源要实行开发和保护并重的科学原则。

通过地质调查,证明我国地热资源丰富,分布广泛,其中盆地型地热资源潜力在2000亿吨标准煤当量以上。全国已发现地热点3200多处,打成的地热井2000多眼,其中具有高温地热发电潜力有255处,预计可获发电装机5800MW,现已利用的只有近30MW。

目前全国29个省区市进行过区域性地热资源评价,为地热开发利用打下了良好基础。几十年来地矿部门列入国家计划,进行重点勘探,进行地热储量评价的大、中型地热田有50多处,主要分布在京津冀、环渤海地区、东南沿海和藏滇地区。全国已发现:

1)高温地热系统,可用于地热发电的有255处,总发电潜力为5800MW·30A,近期至2010年可以开发利用的10余处,发电潜力300MW。

2)中低温地热系统,可用于非电直接利用的2900多处,其中盆地型潜在地热资源埋藏量,相当于2000亿吨标准煤当量。主要分布在松辽盆地、华北盆地、江汉盆地、渭河盆地等以及众多山间盆地如太原盆地、临汾盆地、运城盆地等等,还有东南沿海福建、广东、赣南、湘南、海南岛等。目前开发利用量不到资源保有量的千分之一,总体资源保证程度相当好。

四、海洋能

海洋能源通常指海洋中所蕴藏的可再生的自然能源,主要为潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能。更广义的海洋能源还包括海洋上空的风能、海洋表面的太阳能以及海洋生物质能等。究其成因,潮汐能和潮流能来源于太阳和月亮对地球的引力变化,其他均源于太阳辐射。海洋能源按储存形式又可分为机械能、热能和化学能。其中,潮汐能、海流能和波浪能为机械能,海水温差能为热能,海水盐差能为化学能。

近20多年来,受化石燃料能源危机和环境变化压力的驱动,作为主要可再生能源之一的海洋能事业取得了很大发展,在相关高技术后援的支持下,海洋能应用技术日趋成熟,为人类在下个世纪充分利用海洋能展示了美好的前景。

我国有大陆海岸线长达18000多公里,有大小岛屿6960多个,海岛总面积6700平方公里,有人居住的岛屿有430多个,总人口450多万人。沿海和海岛既是外向型经济的基地,又是海洋运输和开发海洋的前哨,并且在巩固国防,维护祖国权益上占有重要地位。改革开放以来,随着沿海经济的发展,海岛开发迫在眉睫,能源短缺严重地制约着经济的发展和人民生活水平的提高。外商和华侨因海岛能源缺乏,不愿投资;驻岛部队用电困难,不利于国防建设;特别是西沙、南沙等远离大陆的岛屿,依靠大陆供应能源,因供应线过长,诸多不便,非常艰苦。为了保证沿海与海岛经济持久快速地发展及人民生活水平的不断提高,寻求解决能源供应紧张的途径已刻不容缓。

我国海洋能开发已有近40年的历史,迄今建成的潮汐电站8座,80年代以来浙江、福建等地对若干个大中型潮汐电站,进行了考察、勘测和规化设计、可行性研究等大量的前期准备工作。总之,我国的海洋发电技术已有较好的基础和丰富的经验,小型潮汐发电技术基本成熟,已具备开发中型潮汐电站的技术条件。但是现有潮汐电站整体规模和单位容量还很小,单位千瓦造价高于常规水电站,水工建筑物的施工还比较落后,水轮发电机组尚未定型标准化。这些均是我国潮汐能开发现存的问题。其中关键问题是中型潮汐电站水轮发电机组技术问题没有完全解决,电站造价急待降低。

我国波力发电技术研究始于70年代,80年代以来获得较快发展,航标灯浮用微型潮汐发电装置已趋商品化,现已生产数百台,在沿海海域航标和大型灯船上推广应用。与日本合作研制的后弯管型浮标发电装置,已向国外出口,该技术属国际领先水平。在珠江口大万山岛上研建的岸边固定式波力电站,第一台装机容量3kW的装置,1990年已试发电成功。“八五”科技攻关项目总装机容量20kW的岸式波力试验电站和8kW摆式波力试验电站,均已试建成功。总之,我国波力发电虽起步较晚,但发展很快。微型波力发电技术已经成熟,小型岸式波力发电技术已进入世界先进行列。但我国波浪能开发的规模远小于挪威和英国,小型波浪发电距实用化尚有一定的距离。

潮流发电研究国际上开始于70年代中期,主要有美国、日本和英国等进行潮流发电试验研究,至今尚未见有关发电实体装置的报导。我国潮流发电研究始于70年代末,首先在舟山海域进行了8kW潮流发电机组原理性试验。80年代一直进行立轴自调直叶水轮机潮流发电装置试验研究,目前正在采用此原理进行70kW潮流试验电站的研究工作。在舟山海域的站址已经选定。我国已经开始研建实体电站,在国际上居领先地位,但尚有一系列技术问题有待解决。

海洋被认为是地球上最后的资源宝库,也被称作为能量之海。21世纪海洋将在为人类提供生存空间、食品、矿物、能源及水资源等方面发挥重要作用,而海洋能源也将扮演重要角色。从技术及经济上的可行性,可持续发展的能源资源以及地球环境的生态平衡等方面分析,海洋能中的潮汐能作为成熟的技术将得到更大规模的利用;波浪能将逐步发展成为行业。近期主要是固定式,但大规模利用要发展漂浮式;可作为战略能源的海洋温差能将得到更进一步的发展,并将与海洋开发综合实施,建立海上独立生存空间和工业基地;潮流能也将在局部地区得到规模化应用。

潮汐能的大规模利用涉及大型的基础建设工程,在融资和环境评估方面都需要相当长的时间。大型潮汐电站的研建往往需要几代人的努力。因此,应重视对可行性分析的研究。目前,还应重视对机组技术的研究。在投资政策方面,可以考虑中央、地方及企业联合投资,也可参照风力发电的经验,在引进技术的同时,由国外贷款。

波浪能在经历了十多年的示范应用过程后,正稳步向商业化应用发展,且在降低成本和提高利用效率方面仍有很大技术潜力。依靠波浪技术、海工技术以及透平机组技术的发展,波浪能利用的成本可望在5—10年左右的时间内,在目前的基础上下降2—4倍,达到成本低于每千瓦装机容量1万元人民币的水平。

中国在波能技术方面与国外先进水平差距不大。考虑到世界上波能丰富地区的资源是中国的5-10倍,以及中国在制造成本上的优势,因此发展外向型的波能利用行业大有可为,并且已在小型航标灯用波浪发电装置方面有良好的开端。因此,当前应加强百千瓦级机组的商业化工作,经小批量推广后,再根据欧洲的波能资源,设计制造出口型的装置。由于资源上的差别,中国的百千瓦级装置,经过改造,在欧洲则可达到兆瓦级的水平,单位千瓦的造价可望下降2—3倍。

从21世纪的观点和需求看,温差能利用应放到相当重要的位置,与能源利用、海洋高技术和国防科技综合考虑。海洋温差能的利用可以提供可持续发展的能源、淡水、生存空间并可以和海洋采矿与海洋养殖业共同发展,解决人类生存和发展的资源问题。需要安排开展的研究课题为:基础方面,重点研究低温差热力循环过程,解决高效强化传热及低压热力机组以及相应的热动力循环和海洋环境中的载荷问题。建立千瓦级的实验室模拟循环装置并开展相应的数值分析研究,提供设计技术;在技术项目方面,应尽早安排百千瓦级以上的综合利用实验装置,并可以考虑与南海的海洋开发和国土防卫工程相结合,作为海上独立环境的能源、淡水以人工环境(空调)和海上养殖场的综合设备。

中国是世界上海流能量资源密度最高的国家之一,发展海流能有良好的资源优势。海流能也应先建设百千瓦级的示范装置,解决机组的水下安装、维护和海洋环境中的生存问题。海流能和风能一样,可以发展“机群”,以一定的单机容量发展标准化设备,从而达到工业化生产以降低成本的目的。

五、生物质能

生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。生物质能是可再生能源,通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。生物质能的优点是燃烧容易,污染少,灰分较低;缺点是热值及热效率低,体积大而不易运输。直接燃烧生物质的热效率仅为10%一30%。目前世界各国正逐步采用如下方法利用生物质能:

1.热化学转换法,获得木炭、焦油和可燃气体等品位高的能源产品,该方法又按其热加工的方法不同,分为高温干馏、热解、生物质液化等方法;

2.生物化学转换法,主要指生物质在微生物的发酵作用下,生成沼气、酒精等能源产品;

3.利用油料植物所产生的生物油;

4.把生物质压制成成型状燃料(如块型、棒型燃料),以便集中利用和提高热效率。

生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。

目前,生物质能技术的研究与开发已成为世界重大热门课题之一,受到世界各国政府与科学家的关注。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,其中生物质能源的开发利用占有相当的比重。目前,国外的生物质能技术和装置多已达到商业化应用程度,实现了规模化产业经营,以美国、瑞典和奥地利三国为例,生物质转化为高品位能源利用已具有相当可观的规模,分别占该国一次能源消耗量的4%、16%和 l0%。在美国,生物质能发电的总装机容量已超过10000兆瓦,单机容量达10—25兆瓦;美国纽约的斯塔藤垃圾处理站投资2 OOO万美元,采用湿法处理垃圾,回收沼气,用于发电,同时生产肥料。巴西是乙醇燃料开发应用最有特色的国家,实施了世界上规模最大的乙醇开发计划,目前乙醇燃料已占该国汽车燃料消费量的50%以上。美国开发出利用纤维素废料生产酒精的技术,建立了 l兆瓦的稻壳发电示范工程,年产酒精2500吨。

我国是一个人口大国,又是一个经济迅速发展的国家,21世纪将面临着经济增长和环境保护的双重压力。因此改变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。

开发利用生物质能对中国农村更具特殊意义。中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998年农村生活用能总量3.65亿吨标煤,其中秸秆和薪柴为2.07亿吨标煤,占56.7%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。

1991年至1998年,农村能源消费总量从5.68亿吨标准煤发展到6.72亿吨标准煤,增加了18.3%,年均增长2.4%。而同期农村使用液化石油气和电炊的农户由1578万户发展到4937万户,增加了2倍多,年增长达17.7%,增长率是总量增长率的6倍多。可见随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切。传统能源利用方式已经难以满足农村现代化需求,生物质能优质化转换利用势在必行。

热心的画板
闪闪的美女
2025-04-21 08:43:54

人类一直在寻找高效利用太阳能的方法,太阳能作为非常清洁的可再生能源,只需要高效率捕获太阳光,就可以产生大量能源。对于资源日渐匮乏的地球来说,收集太阳能是一种可行的弥补方式。

目前人类收集太阳能的方式,主要依靠零散的太阳能光伏板,在建筑物或较高的地方集中布置,从而收集太阳能。

这种方式效率并不高,而科学家希望可以在太空建造太阳能收集卫星,从而提高太阳能的捕获效率。

太空太阳能技术,已经酝酿数十年:

早在19世纪末,尼古拉·特斯拉就提出了无线电力传输,这一想法在近期进入到大众生活,很多手机都开始支持无线充电。

正是无线电力传输的想法,让太空太阳能技术开始逐渐出现。在1968年,彼得·葛莱瑟首次提出太阳能卫星的想法。

该卫星技术的想法非常简单,就是利用卫星尽可能靠近太阳,利用卫星上的太阳能光伏板从太阳光中收集能量。

完成能量的收集后,利用无线电力传输技术,向地球传递信号,地球上利用接收天线,远距离接收卫星的能量,并提供给电网,传递到需要用电的地方。

虽然我们现在才开始普及无线电力传输技能,但该理论提出后,在1970年,加利福尼亚就完成了数十千瓦的远距离无线电力传输实验。

太空太阳能会遮挡地球阳光吗?

为了提升电力传输的效率,卫星往往需要更大的太阳能收集装置,在最初的设计中,太阳帆就是一种很好的捕获装置。

利用太阳帆,可以大面积收集太阳光,并将其转换为微波能量,但是这也带来了其他问题——巨大的太阳帆需要更高的成本,而且建造难度非常大;太阳帆也会被太阳光驱动,科学家必须持续进行反向推动,避免太阳光将太阳帆“压”回地球。

由于太阳帆距离地球非常遥远,从地球上来看,太阳帆最多只有风筝大小,基本不会产生阴影。

巨型卫星星座,或许是可行的方法:

利用巨大的太阳帆作为太阳能捕获装置,目前来说并不现实,而随着SpaceX的星链卫星发射,科学家认为可以利用巨型卫星星座,作为捕获太阳光的装置。

SpaceX可以在五年时间里制作将近四万颗卫星,这是非常模块化的生产方式,并且可以支持批量生产,从而降低制作成本和硬件成本。

按照目前的卫星发射效率,如果太空太阳能卫星组网开始发射,大约只需要10年时间,就可以搭建出成型的太空太阳能卫星网。

根据科学家的计算,如果太空太阳能卫星持续发射,大约只需要100年时间,地球80%的能源都可以通过太空卫星提供,剩余的20%可以使用其他可再生能源代替。

完成这一目标,人类基本可以摆脱石油的依赖,实现0排放目标。但是由于卫星数量的激增,可能需要100万人参与到太空工作,负责太空太阳能卫星的维护升级和修理工作。

虽然现在绝大多数人的工作都在地球上,或许在几百年后,人类都需要进入太空工作~

虽然太空太阳能计划可以解决地球的能源问题,但是卫星的大量发射,将带来非常严重的太空拥挤现象。

星链卫星的发射,已经让太空轨道空间出现了拥挤信号,如果继续高频率发射100年卫星,整个地球轨道将充满卫星,而这些卫星将频繁进行近距离接触,如果发生碰撞,整个轨道上的卫星都要遭殃。

太空太阳能计划虽然已经酝酿了几十年,但是想要彻底改变地球的能源结构,还需要进一步的探索!

糟糕的酒窝
怡然的自行车
2025-04-21 08:43:54

太阳能是一种可再生能源。

5000多年来,一直在人类的生产生活中发挥巨大作用。随着时间的推移,太阳能的用途发生了很大变化,从取暖到为太空中的卫星供电。但是,目前家庭房屋和各类建筑中,仍然缺乏能效高且价格低廉的太阳能发电设备。

太阳能电池板的工作方式非常简单,它是由数百万个太阳能电池组成的面板。当太阳照射到这些电池板时,通过吸收太阳光,将太阳辐射能通过光电效应或者光化学效应直接或间接转换成电能。这些电能可以为家庭供电,并且价格十分低廉。

人类使用再生能源的原因主要有以下几点:

1、科技的进步让此类能源更加“好用”;

2、化石能源是有限的,不仅其价格会日渐增涨,而且终会有枯竭的时候;

3、某些再生能源(如风能、水力、太阳能)不会排放温室气体(如二氧化碳),因此不会增加温室效应的风险;

4、为了增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求。

悦耳的时光
机灵的哈密瓜,数据线
2025-04-21 08:43:54
是的。太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。

太阳能(solar energy),是指太阳的热辐射能(参见热能传播的三种方式),主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。

俊秀的大树
高贵的芹菜
2025-04-21 08:43:54

再生能源有:

1、太阳能发电

太阳能是一种可再生能源,5000多年来,一直在人类的生产生活中发挥巨大作用。随着时间的推移,太阳能的用途发生了很大变化,从取暖到为太空中的卫星供电。但是,目前家庭房屋和各类建筑中,仍然缺乏能效高且价格低廉的太阳能发电设备。

2、风力发电

风力涡轮机就像喷气发动机的进气口。当空气进入时,首先会遇到一套固定的叶片,它能把空气引导进一套可转动的叶片。空气推动叶片并出现在另一边,此时空气流动的速度比在涡轮机外流动的速度更慢。

遮蔽物做成合适的形状,以便其引导在外面相对流动较快的空气进入转子后面的区域。快速流动的空气加速缓慢移动的空气,使涡轮机叶片后的区域变成低气压,以吸纳更多的空气通过它们。

3、水力发电

水力发电系(Hydroelectric power)利用河流、湖泊等位于高处具有势能的水流至低处,将其中所含势能转换成水轮机之动能,再借水轮机为原动力,推动发电机产生电能。水的高度,水的重量,甚至水的流动速度都可以用来发电。

地球上有大量的河流和不同类型的水流,这意味着我们可以大量安装水力发电站。

4、生物质能

生物质能的应用在日常生活中越来越普遍。生物柴油可以为汽车、公共汽车和商业车辆提供动力;生物质发电机可以提供家庭用电,此外,人们每天都发现新的生物质能。

5、地热能

地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。因为放射性粒子会慢慢衰变,所以地热能是一种可再生能源。并且只要地球还在旋转,地热能就会一直存在,完全不用担心它们会耗尽。