绿氢合成氨什么意思
绿氢合成氨指可再生能源电解水制绿氢,根据查询相关资料显示,绿氢和氮气催化合成氨是最先实现绿氨工业化生产的技术路线。可再生能源制绿氢合成氨及其应用对于全球实现碳中和至关重要,绿氨合成将会成为绿氢的重要应用之一。
来源:经济日报
7月29日,由中国电力企业联合会指导、协鑫(集团)控股有限公司(下称协鑫集团)主办的氢能产业发展论坛暨协鑫氢能战略发布会在京举行。中国能源研究会副理事长吴吟表示,能源行业排放占到全球温室气体排放总量的2/3,实现双碳目标的关键在能源。能源低碳发展有两大路径:化石能源低碳利用和大力发展可再生能源。当前,G20集团中已经有9个国家和地区发布了氢能发展战略,还有7个国家和地区正在开展前期研究。氢能产业呈现出良好发展态势, 科技 进步日新月异、应用场景层出不穷,未来氢能将在钢铁、能源、交通和建筑等领域广泛应用。
根据中国氢能联盟预测,到2030年,我国氢气的年需求量将达到3715万吨左右,在终端能源消费中占比约5%;到2060年,我国氢气的年需求将增至1.3亿吨左右,在终端能源消费中占比约20%。
中国电力企业联合会专职副理事长安洪光表示,通过新能源与氢能的耦合,可助力高比例清洁能源电力系统的稳定运行,解决长时间清洁能源处理和负荷需求的平衡问题,帮助难以减排领域深度脱碳。在他看来,“十四五”时期,将是我国碳达峰“窗口期”、氢能产业发展的发力期,也是氢能市场的培育期和氢能技术的追赶期。
随着减碳行动的开展和各项政策的加持,氢能发展势不可挡。据不完全统计,迄今已有河南、山西、湖北、安徽等超过30个省市对氢能产业发展作出了明确部署,有的还制定了详细的时间表、路线图和任务书。可再生能源制氢、燃料电池 汽车 示范城市群、加氢站建设等项目成行业投资热点。
氢从何处来?在碳达峰、碳中和目标下,回答好这一问题尤为重要。
根据不同的制取方式和碳排放量,氢能被分为灰氢、蓝氢和绿氢。2020年我国氢气来源中,62%为煤制氢,19%天然气制氢,仅有1%的可再生能源制氢,氢来源亟待“绿化”。中国工程院原副院长杜祥琬强调,氢能产业要实现高质量、可持续发展,其核心准则是从源头做到可持续,将波动性、间歇性的风能、太阳能转换为氢能,有利于储能和传输,具有零排放、零污染和可持续优势。
高成本是当前可再生能源制氢大规模推广的主要难题。“降低氢能使用成本是产业发展的关键所在。”在中国石油和化学工业规划院新能源发展研究中心主任刘思明看来,我国氢能产业急需模式创新,依托海外优质天然气资源,转化为氢气具有成本竞争力,国内京津冀、长三角、珠三角氢能产业率先发展,用氢也应避免长距离陆运。他认为,未来国内氢能市场将以“工业副产氢+短距离运输”模式为主,海外将以“优质资源转化蓝氢+长距离化学品载体运输”模式为主。
会议现场,协鑫集团旗下协鑫新能源正式对外发布公司氢能战略。根据规划,协鑫新能源氢能战略由蓝氢和绿氢两部分构成。具体而言,蓝氢目标――首期建成年产230万吨合成氨,逐步扩能至每年400万吨生产规模,可供应国内70万吨蓝氢;绿氢目标――计划到2025年建设100座综合能源站,达到40万吨年产能。
协鑫集团董事长朱共山表示,从空间结构上讲,在东部、南部等负荷中心发展蓝氢,在中西部地区等新能源大基地发展绿氢,一蓝一绿,协同发展。“协鑫新能源将打造不依赖补贴,完全市场化的零碳 科技 先锋企业,做全球综合实力领先的绿氢与蓝氢综合运营服务商。”
对于一般的投资者,就不用考虑这个问题!
一个氢产业链至少涉及到以下几个环节:燃料电池系统、电堆、触电极、质子交换膜、催化剂、空压机、储氢瓶、燃料电池车、加氢站……
一般投资者哪有那么大资金量全面覆盖。如果采用“每个公司都买一点”的方式,即使买到牛股,也因为资金分散,实际收益并不高,还不如买个行业指数基金。
所以,最好集中使用。优先考虑:
电池、电堆——氢能源核心部件;
交换膜、催化剂——公司规模不大,技术上一点革新,就是行业大变化;
加氢站——不用多分析了吧!
因氢能具有安全、高效、可再生、清洁、低碳等特点,世界终将走向以氢能源为主的时代。
对于我国而言,发展氢能,一方面可以丰富绿色低碳能源体系,助力解决风、光、核等新能源的消纳难题;另一方面,可以作为煤炭清洁化利用的极佳途径,推动化石能源清洁转化和替代,这对于我国这个煤炭大国来说尤具现实意义。
“氢气应用较为广泛,在石化领域,它是用量最大的化工原料之一,可用于合成氨、合成甲醇、石油炼制等;在交通领域,随着我国油品质量升级步伐不断加快,多数炼厂采用全加氢方式制油;新能源 汽车 蓄势待发,对氢燃料的需求稳步提升。”
“另外,氢能在农业、 健康 医疗等领域的应用也越来越广泛、深入。”中国国际经济交流中心信息部副部长景春梅表示,随着时代的进步,氢气的应用场景将越来越多,对氢气的需求越来越大,用氢缺口也逐渐加大。
实现大规模制氢需求迫切,那么,哪种制氢路径堪当大任?通常而言,工业化制氢路线主要包括水电解制氢、煤炭气化制氢、天然气制氢、生物质气化制氢、可再生能源制氢等。
从我国能源禀赋及能源利用现状等因素出发,煤炭气化制氢、可再生能源制氢前景广阔。其中,又以煤炭气化制氢最受青睐。
氢能源是全世界都在努力争取研究开发的迄今最为高效,环保及持久的新能源,相比电动车优势很明显,电动车虽然节省了石油资源,但是废旧电池对环境的破坏很大,但是氢能源是真正的零污染,李克强总理去年专门去日本丰田公司考察,显示出国家最高层对此新能源的高度重视,并于今年写入了政府工作报告,坚持看好该产业的未来,产业资本已经大规模进去这个行业,预计五到十年实现量产
先上答案: 氢能目前在交通领域应用较多,尤其是氢燃料电池 汽车 ,除了 汽车 ,氢能在多种交通方式都有应用,在作为交通动力来源之外,氢能作为一种重要的二次能源形式,在储能、应急电源、分布式供能等领域也有很多应用 。
先看交通领域 ,氢燃料电池 汽车 其实是一个很宽泛的概念,氢燃料电池 汽车 除了 乘用车 ,还包括 公交车/大巴、物流车、叉车、重型卡车 等多种车型。国外目前乘用车应用较多,约30000辆,而我国选择了公交车/大巴以及物流车等车型作为前期的推广车辆,一是因为其行驶路线和范围较为固定,有利于加氢站的建设规划,二是因为与乘用车相比车型空间较大,技术难度有所降低,有利于我国的技术起步,截至2019年底,我国氢燃料电池车辆约6000辆,加氢站60座, 今年加氢站已超100座 。
氢能叉车 是氢能在交通领域的一个亮点,目前国外的应用已超过25000辆,氢能叉车比锂电池叉车的优势在于燃料加注时间段、燃料电池比锂电池占用空间小、重量轻、续航时间长,与叉车工况匹配度很好,具有显著优势。
说完了氢能在车辆领域的应用,下面介绍一下氢能在其他交通领域的应用,如 氢燃料电池列车、氢能船舶、氢能飞机 等。
氢燃料电池列车 最早在2002年由美国公司研制开发,为质子交换膜燃料电池驱动,净功率达17KW,随后日本德国西班牙等国家均推出了原型车辆,促进了产业发展。2016 年,法国阿尔斯通基于柴油列车Coradia Lint 54 研发成功氢能列车CoradiaiLint,2018 年在德国正式投入商业运营,这也是世界上第一次正式投入商业运营的氢能列车。我佛山市高明区有轨电车示范线是国内首条采用氢能源燃料电池的线路,目前已实现示范运行。
氢能船舶 在世界上已有多个应用。“Alsterwasser”内河游船2009年完成建造,总长25.5m、总宽5.36m、吃水1.33m、最大速度8kn,载客量超过100人,配备2 50kWPEMFC燃料电池和120Ah胶体铅酸电池。欧盟资助的Methapu项目以瓦锡兰(Wärtsilä)制造的250kWSOFC燃料电池作为船舶辅助动力和推进动力,项目应用的滚装船于2003年建造。2017年7月,由双体豪华赛艇“FormuleTag”改建的完全依靠可再生能源驱动的氢燃料电池船“EnergyObserver”投入航行,该船总长30.5m、总宽12.8m、总重28t,由太阳能光伏、风能和燃料电池构成混合动力系统,采用推进/发电一体化电机推进。
氢能飞机 是氢能在交通领域的另一项重要应用。氢能飞机可有效解决目前航空燃油的污染问题和碳排放问题。目前有两种技术路线,一是氢作为燃料直接燃烧,与目前的飞机系统类似,改动工作小;另一种技术路线类似燃料电池 汽车 ,先通过氢燃料电池系统发电,在用电驱动飞机发动机做功推动飞行。今年10月,一架经过改装的 Piper M 级六座飞机从位于英国克兰菲尔德的公司研发机构起飞,并完成了全图案的环形飞行并成功降落。ZeroAvia 称该飞机是目前世界上最大的氢动力飞机。
以上是氢能在交通领域的主要应用,可以看出不仅局限于 汽车 领域,氢能在多个领域中都发挥着重要作用。
另一方面, 氢是一种能量密度很高的二次能源,具有储能的功能 ,比常规的化学储能的储存时间周期长,可跨日、跨周甚至跨月、跨季度进行能量储存, 实现能量的生产端和消费端相匹配 。利用氢能的能源特性,氢能在 储能、应急电源、分布式供能等领域 也发挥着重要作用。
就在前几天,美国能源部(DOE)发布了储能大挑战路线图Energy Storage Grand Challenge Roadmap,这是美国发布的首个关于储能的综合性战略。 氢储能作为一种重要的储能技术被提及 ,主要形式为电氢双向转化储能和盐穴存储两种,其中电氢双向转化储能为主要利用方式。
在应急电源和分布式供能领域 ,氢能也已有多项应用。近日,全球第一个兆瓦级大型燃气发电系统在德国汉堡的热电联产厂开始现场测试,该技术最吸引人的是,可以将现有机组转换为使用100%氢气运行,为30栋住宅楼、一个 体育 中心、一个日托中心和公园休闲综合体供暖,产生的电能可供电动 汽车 充电及当地电网。英国能源监管机构Ofgem日前宣布,将为苏格兰地区一个可再生能源制氢供热项目提供2412万美元的资金支持。这是该项目继获得苏格兰政府支持后,再度获得英国监管方的“首肯”。
综上所述,氢能不仅应用于 汽车 领域,在交通其他领域也发挥着重要作用,同时氢的能源特性,也是其在储能、分布式供能等领域取得了许多应用。在未来低碳排放、碳中和的趋势下,氢能将发挥更多的作用。
产业链,我觉得自己也只是纸上谈兵。但我可以说一下观点以及看法:氢能源的战略制高点国家已经提出。包括总理在会议上也多次提及。可见已经上升到国家层面。在当下环境改善乏力,作为清洁能源的氢会逐步走上 历史 的舞台。氢作为燃烧能源当然是动力系统。所以第一布局应该在 汽车 方向:发动机,以及附属产业。如果你想要打通产业,那么要围绕这个点,像上游,以及下游延伸。以及未来的发电厂,热力公司。
当然当下最好的选择,就是和氢能源的科研团队展开合作,核心价值才是最重要的。
在上篇《终极能源来了!氢能的政策风口吹完了吗?》中,我们主要梳理了主要国家的氢能政策和战略重点发展方向。比如,德国等欧盟国家侧重于发展绿氢,沙特等中东国家同时发展蓝氢和绿氢,美国强调氢燃料电池的应用,重点发展氢燃料重卡。接下来我们先来了解一下基本的氢能的分类和氢能产业链。
根据生产过程中碳排放量的强度,可将氢气分为化石能源直接制取的“灰氢”、化石能源+二氧化碳捕集与封存制取的“蓝氢”和通过可再生能源、核能电解水制取而成的“绿氢”。
根据中国煤炭工业协会公开数据显示,2020年中国氢气产量超过2500万吨,其中煤制氢所产氢气占62%、天然气制氢占19%,工业副产气制氢占18%,电解水制氢占1%左右。从全球来看,目前使用最多的制氢方法是天然气制氢,占比达到48%,其次为石油制氢,占比30%,煤制氢占18%,电解水制氢占比4%,同样占比很低。
不管是我国3060碳达峰、碳中和的目标,还是欧盟等国促进绿氢发展的战略,绿氢的发展才是长期发展的战略方向。预计到2060年,我们国家以可再生能源制取的绿氢将达到80%。但是,绿氢生产成本的下降需要一个过程,不仅需要光伏、风电等可再生能源的成本进一步下降,也需要制氢的电解槽的成本大幅下降。因此,由灰氢到绿氢的转换过程不可能快速、直接的迭代。而蓝氢作为灰氢向绿氢的过渡阶段,其发展主要取决于碳捕捉和碳封存技术的发展和成本的下降。但是,现在有一些科学家发现蓝氢在降低二氧化碳排放方面,并没有比灰氢好多少,排放量大约只低于灰氢9%-12%。世界主要氢能发展国家对于蓝氢的态度差异较大,鉴于我们国家目前的氢能来源占比和发展阶段,蓝氢应该会作为一个重点。
氢能产业链包含从上游制氢、中游的储氢、运氢到下游的用氢等环节。制氢环节中,电解水制氢获得的是绿氢,化石燃料制氢和工业副产氢如果加入了碳捕捉和封存(CCS)装置,则是蓝氢,如果未经此环节,则产出的是灰氢。
除了煤制氢和天然气制氢,工业副产氢是我国第三大氢气来源,也是我国本身的产业基础具备条件,适合发展的制氢方式。工业副产氢包含焦炉煤气副产氢、氯碱工业副产氢、合成氨副产氢和丙烷脱氢副产氢。
比如氢能概念股的龙头 美锦能源 就是以焦炉煤气制氢为基础,然后在产业链上打造加氢站和氢燃料电池的全线产业链。
滨化股份具有1.6万吨氯碱工业副产氢的产能,同时还在建设PDH项目,将会有2.3万吨丙烷脱氢副产氢。此外,金能 科技 、万华化学和金发 科技 等都有一定的工业副产氢作为副产品。
从碳中和的长期要求来看,要达到零排放,电解水制氢是未来发展的主要方向。目前,在可再生能源电解水制氢路线上布局的主要有隆基股份、阳光电源和宝丰能源。
和其他能源和燃料相比,氢气的储运难度较大、成本占比明显偏大,这也是制约氢气成本难以大幅下降的主要因素。在上中下游各环节,上游制氢和下游用氢相对来说都比较成熟,而中游储运是制约氢能大规模发展的重要原因。
氢气的储运方式分为气态、液态和固态三种。从技术成熟度来看,高压气态储氢最为常用。与之对应的运输方式,包括长管拖车和管道两种。高压储氢的安全性高,技术相对简单,但由于氢气能量密度小,其储氢量非常低,长管拖车更适用于用氢量不大、近距离运输的时候。管道储运在长距离运输中会形成成本优势,但管道建设成本大,初始投资高。
为解决能量密度小的问题,全球都在研发低温液态储氢,其具有储氢密度高等特点,储存方式和储存石油类似,运输液氢可减少车辆运输频次、提高加氢站单站供应能量,适用于用氢量大、远距离运输的情况。但液态储运氢也有短板,比如氢气液化成本高,长时间存放会出现氢气逃逸现象。在我国,低温液态储运氢主要运用于军事和航天领域,民用领域由于受到法规限制,目前无法应用。
固态储氢是以金属氢化物、化学氢化物或纳米材料等作为储氢载体, 通过化学吸附和物理吸附的方式实现氢的存储。固态储氢密度更高,但是成本也更高,技术更复杂,目前还比较难商业化。
根据中国氢能联盟发布的《中国氢能源及燃料电池产业白皮书(2019年版)》(下称《白皮书》),长管拖车、固体储运成本可观,经济距离却不超过150公里;液态储运经济距离大于200公里,成本在所有方式中最高;管道运输成本最低,经济距离超过500公里。
气态储氢方式中储氢瓶是重要的一环,国内公司 中材 科技 率先研发完成国内最大容积320L氢气瓶,并已投入市场。除了320L瓶,其他氢气瓶产品规格种类齐全,从1.5L到385L全覆盖。此外,目前中材 科技 的70MPa Ⅳ型瓶产线正在建设,年产能1万只,预计2021年底完成,2022年上半年取得证书,主要针对海外市场销售。
氢气液化方面,国内发展比较滞后,根据氢气液化的概念股中泰股份上周在投资者提问时的回答:目前公司已具备氢液化核心设备板翅式换热器的设计及制造技术,整套氢液化工艺流程仍在积极研发中。另一深冷概念股深冷股份早几日也公开提示公司还没有氢能方面的营收。
加氢站是氢产业链的重要一环,然而,由于氢燃料电池 汽车 还没有实现大规模商用,而且加氢站的投资巨大,目前建设成本和运营成本远远高于传统加油站、加气站。在产业发展初期,建独立加氢站不具有经济性,从投资者的角度,可以回避这种重资产、高投资并将长期亏损的产业链环节。
燃料电池系统是个复杂的系统,其中以电堆系统最为重要。除了电池电堆以外,还有供氢系统、供气系统、水热管理系统。从价值量来看,电堆系统占比最大,达45-50%,其次是空压机,占比25%左右。而在电堆中又以催化剂、双极板和质子交换膜的价值量占比大,这些核心材料和技术仍然与欧美存在一定差距。
催化剂在整个燃料电池系统成本中占到大约18%,而且这个核心材料仍然依靠进口,目前还没有一家企业能做到催化剂的国产化。 贵研铂业 属于前瞻性布局燃料电池铂极催化剂的企业,而且被列入工信部第二批专精特新“小巨人”企业。但即便是作为铂极催化剂的领头企业,贵研铂业近日在投资者互动平台表示:截至目前,公司氢燃料电池铂极催化剂尚在实验室阶段,目前没有商品化产品。
和催化剂的情况类似,在双极板、质子交换膜等领域,国内的材料与技术目前与国际先进水平还存在一定差距,国产化的进程刚刚开始,从技术突破和降低成本的角度还有很长的路要走。
电池电堆和燃料电池整体系统方面,亿华通、潍柴动力、新源动力和美锦能源持股的国鸿氢能占据市场主导地位。此前我们专门写过燃料电池系统,此处不多说。
欢迎回顾亿华通的个股报告:【被外资买爆的氢燃料电池企业!同样有雷?】
欢迎回顾潍柴动力的个股报告:【勇敢外卷,中国高端制造之光】
1.1电解水制氢.
水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的
逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在
75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电制得氢气并用氢作为中间载能体来调节,贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制提氢气作料而非作为能源。随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。
1.2矿物燃料制氢
以煤、石油及天然气为原料制取氢气是当今制取氢气是主要的方法。该方法在我国都具有成熟的工艺,并建有工业生产装置。
(1)煤为原料制取氢气
在我国能源结构中,在今后相当长一段时间内,煤炭还将是主要能源。如何提高煤的利用效率及
减少对环境的污染是需不断研究的课题,将煤炭转化为氢是其途径之一。
以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000℃制取焦碳副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤气300-350m3,可作为城市煤气,
亦是制取氢气的原料。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。气化
剂为水蒸汽或氧所(空气),气体产物中含有氢有等组份,其含量随不同气化方法而异。我国有大批中小型合成氢厂,均以煤为原料,气化后制得含氢煤气作为合成氨的原料。这是一种具有我国特点的取得氢源方法。采用OGI固定床式气化炉,可间歇操作生产制得水煤气。该装置投资小,操作容易,其气体产物组成主要是氢及一氧化碳,其中氢气可达60%以上,经转化后可制得纯氢。采用煤气化制氢方法,其设备费占投资主要部分。煤地下气化方法近数十年已为人们所重视。地下气化技术具有煤
资源利用率高及减少或避免地表环境破坏等优点。中国矿业大学余力等开发并完善了"长通道、大断
面、两阶段地下煤气化"生产水煤气的新工艺,煤气中氢气含量达50%以上,在唐山刘庄已进行工业性试运转,可日产水煤气5万m3,如再经转化及变压吸附法提纯可制得廉价氢气,该法在我国具有一定开发前景.我国对煤制氢技术的掌握已有良好的基础,特别是大批中小型合成氨厂的制氢装置遍布各地,为今后提供氢源创造了条件。我国自行开发的地下煤气化制水煤气获得廉价氢气的工艺已取得
阶段成果,具有开发前景,值得重视。
(2)以天然气或轻质油为原料制取氢气
该法是在催化剂存在下与水蒸汽反应转化制得氢气。主要发生下述反应:
CH4+H2O→CO+H2
CO+H2O→COZ+HZ
CnH2h+2+Nh2O→nCO+(Zh+l)HZ
反应在800-820℃下进行。从上述反应可知,也有部分氢气来自水蒸汽。用该法制得的气体组
成中,氢气含量可达74%(体积),其生产成本主要取决于原料价格,我国轻质油价格高,制气成本贵,采用受到限制。大多数大型合成氨合成甲醇工厂均采用天然气为原料,催化水蒸汽转化制氢的工艺。我国在该领域进行了大量有成效的研究工作,并建有大批工业生产装置。我国曾开发采用间歇式天然气蒸汽转化制氢工艺,制取小型合成氨厂的原料,这种方法不必用采高温合金转化炉,装置投资成本低。以石油及天然气为原料制氢的工艺已十分成熟,但因受原料的限制目前主要用于制取化工原
料。
(3)以重油为原料部分氧化法制取氢气
重油原料包括有常压、减压渣油及石油深度加工后的燃料油,重油与水蒸汽及氧气反应制得含氢
气体产物。部分重油燃烧提供转化吸热反应所需热量及一定的反应温度。该法生产的氢气产物成本
中,原料费约占三分之一,而重油价格较低,故为人们重视。我国建有大型重油部分氧化法制氢装置,用于制取合成氢的原料。
1.3生物质制氢
生物质资源丰富,是重要的可再生能源。生物质可通过气化和微生物制氢。
(1)生物质气化制氢
将生物质原料如薪柴、麦秸、稻草等压制成型,在气化炉(或裂解炉)中进行气化或裂解反应可制得含氢燃料。我国在生物质气化技术领域的研究已取得一定成果,在国外,由于转化技术的提高,生物质气化已能大规模生产水煤气,其氢气含量大大提高。
(2)微生物制氢
微生物制氢技术亦受人们的关注。利用微生物在常温常压下进行酶催反应可制得氢气。生物质
产氢主要有化能营养微生物产氢和光合微生物产氢两种。属于化能营养微生物的是各种发酵类型的
一些严格厌氧菌和兼性厌氧菌)发酵微生物放氢的原始基质是各种碳水化合物、蛋白质等。目前已有
利用碳水化合物发酵制氢的专利,并利用所产生的氢气作为发电的能源。光合微生物如微型藻类和
光合作用细菌的产氢过程与光合作用相联系,称光合产氢。
1.4其它合氢物质制氢
国外曾研究从硫化氢中制取氢气。我国有丰富的H25资源,如河北省赵兰庄油气田开采的天然气中H多含量高达90%以上,其储量达数千万吨,是一种宝贵资源,从硫化氢中制氢有各种方法,我国在90年代开展了多方面的研究,各种研究结果将为今后充分合理利用宝贵资源,提供清洁能源及
化工原料奠定基础。
德国化学家哈伯(F.Haber,1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6上。这是工业普遍采用的直接合成法。
反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。
合成氨反应式如下(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) :
扩展资料:
氨的主要用途:
氨的主要用途是氮肥、制冷剂、化工原料。无机方面主要用于制氨水、液氨、氮肥(尿素、碳铵等)、硝酸、铵盐、纯碱。有机方面广泛应用于合成纤维、塑料、染料、尿素等。
合成氨工业的特点:
1、农业对化肥的需求是合成氨工业发展的持久推动力。世界人口不断增长给粮食供应带来压力,而施用化学肥料是农业增产的有效途径。
氨水(即氨的水溶液)和液氨体本身就是一种氮肥;农业上广泛采用的尿素、硝酸铵、硫酸铵等固体氮肥,和磷酸铵、硝酸磷肥等复合肥料,都是以合成氨加工生产为主。
2、与能源工业关系密切。合成氨生产通常以各种燃料为原料,同时生产过程还需燃料供给能量,因此,合成氨是一种消耗大量能源的化工产品。每吨液氨的理论能耗为 21.28GJ,实际能耗远比理论能耗多,随着原料、工厂规模、流程与管理水平不同而有差异。
日产 1000t氨的大型合成氨装置生产液氨的实际能耗约为理论能耗的两倍(表2[ 大型氨厂生产合成氨的实际能耗])。
3、工艺复杂、技术密集。氨合成是在高压高温和催化剂存在下进行的,为气固相催化反应过程。由于氨合成催化剂(见无机化工催化剂)很易受硫的化合物、碳的氧化物和水蒸气毒害(见催化剂中毒)。
而从各种燃料制取的原料气中都含有不同数量的这些物质,故在原料气送往氨合成前,需将有害物质除去。因此合成氨生产总流程长,工艺也比较复杂,根据不同原料及不同的净化方法而有多种流程(见氨)。
参考资料来源:百度百科—合成氨
灰氢
灰氢,是通过化石燃料(例如石油、天然气、煤炭等)燃烧产生的氢气,在生产过程中会有二氧化碳等排放。目前,市面上绝大多数氢气是灰氢,约占当今全球氢气产量的95%左右。
灰氢的生产成本较低,制氢技术较为简单,而且所需设备、占用场地都较少,生产规模偏小。
蓝氢
蓝氢,是将天然气通过蒸汽甲烷重整或自热蒸汽重整制成。虽然天然气也属于化石燃料,在生产蓝氢时也会产生温室气体,但由于使用了碳捕捉、利用与储存(CCUS)等先进技术,温室气体被捕获,减轻了对地球环境的影响,实现了低排放生产。
绿氢
绿氢,是通过使用再生能源(例如太阳能、风能、核能等)制造的氢气,例如通过可再生能源发电进行电解水制氢,在生产绿氢的过程中,完全没有碳排放。
绿氢是氢能利用的理想形态,但受到目前技术及制造成本的限制,绿氢实现大规模应用还需要时间。
氢能(Hydrogen Energy)是指氢和氧进行化学反应释放出的化学能,是一种清洁的二次能源,具有能量密度大、零污染、零碳排等优点,被誉为21世纪的“终极能源”。
氢能作为一种清洁、高效、安全、可持续的新能源,有助于解决能源危机、环境污染等问题,是人类的战略能源发展方向。
氢具有高挥发性、高能量,是能源载体和燃料,同时氢在工业生产中也有广泛应用。现在工业每年用氢量为5500亿立方米,氢气与其它物质一起用来制造氨水和化肥,同时也应用到汽油精炼工艺、玻璃磨光、黄金焊接、气象气球探测及食品工业中。而液态氢可以作为火箭燃料。
氢能的主要优点有:
燃烧热值高,燃烧同等质量的氢产生的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源,演绎了自然物质循环利用、持续发展的经典过程。
一、电解水制氢
多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。
二、水煤气法制氢
用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。
三、由石油热裂的合成气和天然气制氢
石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气
也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。
四、焦炉煤气冷冻制氢
把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。
五、电解食盐水的副产氢
在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。
六、酿造工业副产
用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。
七、铁与水蒸气反应制氢
但品质较差,此系较陈旧的方法现已基本淘汰
制氢技术有:
1. 化石燃料制氢
化石燃料制氢是一种传统的制氢方法,也是一种古老的制氢过程。然而,它仍然依赖化石燃料,并将排放二氧化碳等温室气体。通常用于制氢的化石燃料是天然气。我国的天然气极度缺乏,原料利用率低,制作工艺复杂,难度大。天然气制氢建设地点也很受天然气供应的影响。
2. 甲醇重整制氢法
甲醇蒸汽重整制氢法是20世纪80年代国外发展起来的一种制氢技术,其投资低,建成快,无排放无污染,原料可获得性高。至今为止国内外的制氢工艺非常成熟,高度集成的技术和燃料电池发电技术,在新能源汽车、通信站等领域成功应用,应用前景非常好。
3. 工业副产品制氢
焦炉煤气是采用变压吸附工艺制氢的工艺,从焦化工业副产物焦炉煤气中提取纯氢气,其基本原理是利用固体吸附剂对气体进行选择性吸附,并且气体吸附在吸附剂上随分压的降低而降低气体混合分离和吸附剂再生的特性,达到净化制氢的目的。
4. 电解水制氢
传统的电解水也可以获得氢气,国内外利用电解水制氢的技术相对成熟,效率高,制氢过程简单。但这种方法由于成本高,除已建成的装置外,新装置很少。
氢气的作用:
1、在石化工业中,需加氢通过去硫和氢化裂解来提炼原油。
2、氢的另一个重要的用途是对人造黄油、食用油、洗发精、润滑剂、家庭清洁剂及其它产品中的脂肪氢化。
3、在玻璃制造的高温加工过程及电子微芯片的制造中,在氮气保护气中加入氢以去除残余的氧。
4、用作合成氨、合成甲醇、合成盐酸的原料,冶金用还原剂。
5、由于氢的高燃料性,航天工业使用液氢作为燃料。