建材秒知道
登录
建材号 > 能源科技 > 正文

发展燃料电池 8家单位成立国创氢能联盟

幸福的手套
虚拟的八宝粥
2023-01-01 01:19:42

发展燃料电池 8家单位成立国创氢能联盟

最佳答案
无限的高跟鞋
开放的小懒猪
2025-04-20 03:34:34

氢燃料电池汽车作为继传统动力、纯电动力之外另一条技术路线备受重视。如果未来加氢和加油一样方便,技术、安全、成本等问题都得到解决,用户是否会考虑驾驶氢燃料电池汽车?我国氢能和燃料电池产业还处于导入期,还需政府、企业和学界通力合作,解决目前面临的一系列问题。

1月12日,张家口市人民政府和中国电动汽车百人会共同主导了“国创氢能产业创新联盟成立暨氢能战略合作签约仪式”,联合整车、零部件企业及研究院等8家单位,共同签署氢能战略合作框架协议,并成立国创氢能联盟。

北京亿华通科技股份有限公司、北京汽车集团有限公司、北京-清华工业开发研究院、中国船舶重工集团公司第七一八研究所、中国汽车技术研究中心有限公司、中国长江三峡集团有限公司、河北省国控投资管理有限公司、张家口市氢能与可再生能源研究院等成为国创氢能联盟成员,力图为我国氢能和燃料电池产业发展,发挥自己的作用。

根据协议,各方将在《国家产业创新中心建设工作指引(试行)》政策引导下,在氢能领域组建产业创新中心,围绕制氢、储运加注、燃料电池、应用示范和产业集聚发展、创新体系建设、标准体系建设等多个方面,服务关键共性技术,推动氢能产业链联合技术攻关,加快氢能产业布局,构筑氢能全产业链生态体系。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

最新回答
热情的蛋挞
沉静的睫毛膏
2025-04-20 03:34:34

中国船舶重工集团公司第七一八研究所(以下简称“七一八所”)隶属于世界500强中国船舶重工集团公司,创立于1966年,总部位于河北省邯郸市,是集军民产业的科研开发、设计生产、技术服务于一体的国家科研单位,主要从事高能化学、三防技术、制氢及氢能源开发、特种气体、精细化工、石油测井、环境工程、气体分析、自动控制、核电消氢、变频节能、空气净化、医用制氧等方面的专业研究设计。

在氢能领域,中船重工已经建成了围绕制氢、储氢、运氢、用氢的完整产业链,旗下涉及氢能的企业包括邯郸七一八研究所、南京七二四研究所、洛阳七二五研究所、武汉七一二研究所等。据了解,中船重工将把氢能产业作为公司十三五乃至十四五极为重要的战略方向,相关工作将由七一八所牵头,投建装备制造、工程建设、投资运营等全产业链环节。

在制氢领域,七一八所拥有国际领先的加压电解水制氢技术,以及全国最大的电解水制氢设备生产基地,七一八所已经成为了国内规模最大的电解水制氢装备研究和生产企业。此外,七一八所还具备甲醇制氢、富氢尾气提氢和天然煤制氢等技术,产氢量都很大,氢气纯度超5个9。

除制氢技术外,七一八所还致力于可再生能源制氢环节。

2015年,七一八所参与河北沽源的风电制氢综合利用示范项目,负责技术支持和储氢系统的工作,将宽功率波动高效电解制氢设备项目将风电技术与电解制氢技术有机结合,通过研究风电输出功率波动对电解制氢装量性能的影响,开发研究功率波动高效电解制氢设备,以使电解制氢设备对风电输出功率波动的耐受度达到0-100%;2017年,七一八所参与了863的风电耦合储氢燃料电池发电微网系统的研发和示范,研究功率波动对电解水制氢的影响;同年,七一八所参与了亿华通控股公司海珀尔在张家口的可再生能源制氢项目,与亿华通签署了氢能领域战略合作协议,并为该项目提供了2000立方/小时的电解水制氢设备。

为探索如何解决制约电解水制氢和可再生能源制氢的电价和设备这两大关键因素,七一八所还致力于研发碱水电解技术及纯水电解技术。据了解,七一八所目前已规划了相关研发的技术目标,预计最晚可在2020年上半年实现目标。七一八所所长李俊华介绍,一旦目标实现,整个系统的造价会降低超20%,能耗降低超5%。届时从经济性的测算来看,很多项目将具备自我经济运行价值和能力。

在加氢站领域,七一八所参与了多项加氢站项目的设计和建设,包括固定式加氢站——比如供应核心设备协助宇通佛山加氢站的建设;提供移动和撬装加氢站装置——如大中型加氢设备加注压力35Mpa,加注能力200—1000公斤/天。2018年,七一八所还与中车唐山合作,参与了世界首列燃料电池轨道机车的研制项目。

在车载氢系统领域,七一八所在车载氢系统相关设计、系统研制、装备等环节都有所研发,目前已经成为国内燃料电车领域车辆高压车载系统的供应商。其所控股的北京派瑞华氢能源公司也参与加氢站设计与建设、车载氢系统,承担了国内多座加氢站的设计与建设任务,交付的车载氢系统已经超过千套。

12月13-14日,七一八所将出席国际氢能及燃料电池产业发展技术峰会(2019IHFCS),并发表主题为“水电解制氢技术发展前景与制氢设备性能分析”的演讲。在此诚邀关注七一八所、以及氢能及燃料电池最新技术前景的您,拨冗莅临本次国际氢能及燃料电池产业发展技术峰会,共同为推动国内氢能产业发展献言建策。

活力的小蜜蜂
无私的鸡
2025-04-20 03:34:34

1清华大学(Tsinghua University):自强不息,厚德载物

(清华学堂)

清华大学是“清华大学—剑桥大学—麻省理工学院低碳能源大学联盟”成员。其核能与新能源技术研究院不仅有核能研究的硬实力,在太阳能、风能、电池、海水淡化和新材料等方面也很强。院内设有20多个实验室,包括生物质能研究室、新材料研究室等。清华材料学院的研究方向也包括新能源材料与器件。

2华北电力大学:电力行业的根正苗红

由教育部与国家电网等七家电力央企和中国电力企业联合会、华北电力大学等九家单位组成的华北电力大学理事会共建的全国重点大学。学校积极响应国家能源发展战略规划,2007年7月成立了国内首家“可再生能源学院”,整合各新能源学科力量,逐步形成并深化了“以优势学科为基础,以新兴能源学科为重点,以文理学科为支撑”的“大电力”学科特色办学体系,其中四个基地被列入教育局和国家外国专家局联合实施的“高等学校学科创新引智计划”(“111计划”)。

3西安交通大学(Xi’an Jiao Tong University):英俊济跄,经营四方

西安交大与香港科技大学共同成立了可持续发展学院,学院里设有可再生能源系,研究涵盖可再生能源生产和转换,混合动力和系统技术。此外,学校设有陕西省重点实验室可再生能源工程技术研究中心。学校材料物理与化学系研究领域涵盖能源材料、纳米功能材料等。

4上海交通大学(Shanghai Jiao Tong University,SJTU):相聚在东海之滨,汲取知识的甘泉

(上海交通大学徐汇校区)

上海交通大学能源研究院包括7个研究所、6个研究中心,研究领域包括太阳能、建筑节能、生物质能、风电及其控制系统、氢能与燃料电池、清洁燃料生产与生物化工转换等。相关研究中心包括与挪威科大联合建立的可持续能源联合研究中心,新能源工程技术研究中心。

5天津大学(Tianjin University,TJU):花堤蔼蔼,北运滔滔,巍巍学府北洋高

(天津大学敬业湖夜景)

天津大学建筑工程学院下设水利与风能工程研究院、道达海上风电研究院。化工学院下设有多晶硅材料制备技术国家工程实验室、绿色合成与转化教育部重点实验室,曾成功举办“太阳能电池材料国际研讨会”。此外,学校还设有可持续能源研究中心。

6浙江大学(Zhejiang University):大不自多,海纳江河,惟学无际,际于天地

(浙江大学紫金港校区)

浙江大学材料科学与工程学院设有硅材料国家重点实验室,研究方向包括半导体硅材料、半导体薄膜材料、复合半导体材料、微纳结构与材料物理,注重硅材料在光伏电池上的应用。能源工程学院设有能源清洁利用国家重点实验室,除化石能源的清洁利用研究,还涵盖废弃物高效清洁能源化利用研究、新能源及先进能源系统、生物质液化研究等。

甜美的小馒头
留胡子的飞机
2025-04-20 03:34:34
氢能 【hydrogen energy】【】 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。氢能具有以下主要优点:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源。目前,氢能技术在美国、日本、欧盟等国家和地区已进入系统实施阶段。

煤炭石油等矿物燃料的广泛使用,已对全球环境造成严重污染,甚至对人类自身的生存造成威

胁。同时矿物燃料的存量,是一个有限量,也会随着过度开采而枯竭。因此,当前在设法降低现有常

规能源(如煤、石油等)造成污染环境的同时,清洁能源的开发与应用是大势所趋。氢能是理想的清洁能源之一,已广泛引起人们的重视。氢不仅是一种清洁能源而且也是一种优良的能源载体,具有可储的特性。储能是合理利用能量的一种方式。太阳能、风能分散间歇发电装置及电网负荷的峰谷差或

有大量廉价电能能都可以转化为氢能储存,供需要时再使用,这种储能方式分散灵活。氢能也具有可

输的特性,如在一定条件下将电能转化为氢能,输氢较输电有一定的优越性。科学家认为,氢能在二

十一世纪能源舞台上将成为一种举足轻重的能源。

l、氢的产生途径

1.1电解水制氢.

水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的

逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在

75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电制得氢气并用氢作为中间载能体来调节,贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制提氢气作料而非作为能源。随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。

1.2矿物燃料制氢

以煤、石油及天然气为原料制取氢气是当今制取氢气是主要的方法。该方法在我国都具有成熟的工艺,并建有工业生产装置。

(1)煤为原料制取氢气

在我国能源结构中,在今后相当长一段时间内,煤炭还将是主要能源。如何提高煤的利用效率及

减少对环境的污染是需不断研究的课题,将煤炭转化为氢是其途径之一。

以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000℃制取焦碳副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤气300-350m3,可作为城市煤气,

亦是制取氢气的原料。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。气化

剂为水蒸汽或氧所(空气),气体产物中含有氢有等组份,其含量随不同气化方法而异。我国有大批中小型合成氢厂,均以煤为原料,气化后制得含氢煤气作为合成氨的原料。这是一种具有我国特点的取得氢源方法。采用OGI固定床式气化炉,可间歇操作生产制得水煤气。该装置投资小,操作容易,其气体产物组成主要是氢及一氧化碳,其中氢气可达60%以上,经转化后可制得纯氢。采用煤气化制氢方法,其设备费占投资主要部分。煤地下气化方法近数十年已为人们所重视。地下气化技术具有煤

资源利用率高及减少或避免地表环境破坏等优点。中国矿业大学余力等开发并完善了"长通道、大断

面、两阶段地下煤气化"生产水煤气的新工艺,煤气中氢气含量达50%以上,在唐山刘庄已进行工业性试运转,可日产水煤气5万m3,如再经转化及变压吸附法提纯可制得廉价氢气,该法在我国具有一定开发前景.我国对煤制氢技术的掌握已有良好的基础,特别是大批中小型合成氨厂的制氢装置遍布各地,为今后提供氢源创造了条件。我国自行开发的地下煤气化制水煤气获得廉价氢气的工艺已取得

阶段成果,具有开发前景,值得重视。

(2)以天然气或轻质油为原料制取氢气

该法是在催化剂存在下与水蒸汽反应转化制得氢气。主要发生下述反应:

CH4+H2O→CO+H2

CO+H2O→COZ+HZ

CnH2h+2+Nh2O→nCO+(Zh+l)HZ

反应在800-820℃下进行。从上述反应可知,也有部分氢气来自水蒸汽。用该法制得的气体组

成中,氢气含量可达74%(体积),其生产成本主要取决于原料价格,我国轻质油价格高,制气成本贵,采用受到限制。大多数大型合成氨合成甲醇工厂均采用天然气为原料,催化水蒸汽转化制氢的工艺。我国在该领域进行了大量有成效的研究工作,并建有大批工业生产装置。我国曾开发采用间歇式天然气蒸汽转化制氢工艺,制取小型合成氨厂的原料,这种方法不必用采高温合金转化炉,装置投资成本低。以石油及天然气为原料制氢的工艺已十分成熟,但因受原料的限制目前主要用于制取化工原

料。

(3)以重油为原料部分氧化法制取氢气

重油原料包括有常压、减压渣油及石油深度加工后的燃料油,重油与水蒸汽及氧气反应制得含氢

气体产物。部分重油燃烧提供转化吸热反应所需热量及一定的反应温度。该法生产的氢气产物成本

中,原料费约占三分之一,而重油价格较低,故为人们重视。我国建有大型重油部分氧化法制氢装置,用于制取合成氢的原料。

1.3生物质制氢

生物质资源丰富,是重要的可再生能源。生物质可通过气化和微生物制氢。

(1)生物质气化制氢

将生物质原料如薪柴、麦秸、稻草等压制成型,在气化炉(或裂解炉)中进行气化或裂解反应可制得含氢燃料。我国在生物质气化技术领域的研究已取得一定成果,在国外,由于转化技术的提高,生物质气化已能大规模生产水煤气,其氢气含量大大提高。

(2)微生物制氢

微生物制氢技术亦受人们的关注。利用微生物在常温常压下进行酶催反应可制得氢气。生物质

产氢主要有化能营养微生物产氢和光合微生物产氢两种。属于化能营养微生物的是各种发酵类型的

一些严格厌氧菌和兼性厌氧菌)发酵微生物放氢的原始基质是各种碳水化合物、蛋白质等。目前已有

利用碳水化合物发酵制氢的专利,并利用所产生的氢气作为发电的能源。光合微生物如微型藻类和

光合作用细菌的产氢过程与光合作用相联系,称光合产氢。

1.4其它合氢物质制氢

国外曾研究从硫化氢中制取氢气。我国有丰富的H25资源,如河北省赵兰庄油气田开采的天然气中H多含量高达90%以上,其储量达数千万吨,是一种宝贵资源,从硫化氢中制氢有各种方法,我国在90年代开展了多方面的研究,各种研究结果将为今后充分合理利用宝贵资源,提供清洁能源及

化工原料奠定基础。

1.5各种化工过程副产氢气的回收

多种化工过程如电解食盐制碱工业、发酵制酒工艺、合成氨化肥工业、石油炼制工业等均有大量

副产氢气,如能采取适当的措施进行氢气的分离回收,每年可得到数亿立方米的氢气。这是一项不容

忽视的资源,应设法加以回收利用。目前化工厂副产氢气的回收,可提供一种较为廉价的氢源,应予

以重视。

2、氢的解和运输

氢在一般条件下是以气态形式存在的,这就为贮存和运输带来了很大的困难。氢的贮存有三种

方法:高压气态贮存;低温液氢贮存;金属氢化物贮存。

2.l气态贮存

气态氢可贮存在地下库里,也可装人钢瓶中,为减小贮存体积,必须先将氢气压缩,为此需消耗较多的压缩功。一般一个充气压力为 20mp的高压钢瓶贮氢重量占只1.6%;供太空用的钛瓶储氢重量

也仅为5%。为提高贮氢量,目前正在研究一种微孔结构的储氢装置,它是一微型球床。微型球系薄

壁(1—10um),充满微孔(l0-10um),氢气贮存在微孔中,微型球可用塑料、玻璃、陶瓷或金属制造。

2.2、低温液氢贮存

将氢气冷却到-253℃,即可呈液态,然后,将其贮存在高真空的绝热容器中,液氢贮存工艺首先

用于宇航中,其贮存成本较贵,安全技术也比较复杂.高度绝热的贮氢容器是目前研究的重点,现在一种间壁间充满中孔微珠的绝热容器已经问世。这种二氧化硅的微珠导热系数极小,其颗粒又非常细

可完全抑制颗粒间的对流换热,将部分镀铝微珠(一般约为3%-5%)混入不镀铝的微珠中可有效地

切断辐射传热。这种新型的热绝缘容器不需抽真空,其绝热效果远优于普遍高真空的绝热容器,是一

种理想的液氢贮存罐,美国宇航局已广泛采用这种新型的贮氢容器。

2.3、金属氢化物贮存

氢与氢化金属之间可以进行可逆反应,当外界有热量加给金属氢化物时,它就分解为氢化金属并

放出氢气。反之氢和氢化金属构成氢化物时,氢就以固态结合的形式储于其中,用来贮氢的氢化金属

大多为由多种元素组成的合金。目前世界上己研究成功多种贮氢合金,它们大致可以分为四类:一是

稀土锎镍等,每公斤锎镍合金可贮氢153L。二是铁一钛系,它是目前使用最多的贮氢材料,其贮氢量

大,是前者的4倍,且价格低,活性大,还可在常温常压下释放氢,给使用带来很大的方便。三是镁系,这是吸氢量最大的金属元素,但它需要在287℃下才能释放氢,且吸收氢十分缓慢,因而使用上受限制。四是钒、铌、锆等多元素系,这类金属本身属稀贵金属,因此进一步研究氢化金属本身的化学物理性质,包括平衡压力一温度曲线、生成食转化反应速度,化学及机械稳定性等,寻求更好的贮氢材料仍是氢开发利用中值得注意的问题。带金属氢化物的贮氢装置既有固定式也有移动式,它们既可作为氢燃料和氢物料的供应来源,也可用于吸收废热,储存太阳能,还可作氢泵或氢压缩机使用。

2.4、氢气的运输

氢虽然有很好的可运输性,但不论是气态氢还是液氢,它们在使用过程中都存在在着不可忽视的

特殊问题,首先,由于氢特别轻,与其他燃料相比在运输和使用过程中单位能量所占的体积特别大,即使液态氢也是如此。其次,氢特别容易泄漏,以氢作燃料的汽车行驶试验证明,即使是真空密封的氢燃料箱,每24h的泄漏率就达2%,而汽油一般一个月才泄漏1%,因此对贮氢容器和输氢管道、接头、阀门都要采取特殊的密封措施。第三,液氢的温度极低,只要有一点滴掉在皮肤上就会发生严重的冻伤,因此在运输和使用过程中应特别注意采取各种安全措施。

3、氢能利用

早在第二次世界大战期间,氢即用作A—2火箭发动机的液体推进剂。1960年液氢首次用作航天动力燃料。1970年美国发射的"阿波罗"登月飞船使用的起飞火箭也是用液氢作燃料。现在氢已是火箭领域的常用燃料了。对现代航天飞机而言,减轻燃料自重,增加有效载何变得更为重要。氢的能量密度很高,是普遍汽油的3倍,这意味着燃料的自重可减轻2/3,这对航天飞机无疑是极为有利的。今天的航天飞机以氢作为发动机的推进剂,以纯氧分为氧化剂,液氢就装在外部推进剂桶内,每次发射需用 1450m3,重约100t。

现在科学家们正在研究一种"固态氢"的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船

的动力燃料。在飞行期间,飞船上所有的非重要零件都可以转作能源而"消耗掉"。这样飞船在宇宙

中就能飞行更长的时间。

氢是21世纪重要的能源载体。以氢为燃料的燃料电池,燃烧时氢与氧结合生成水,是一种洁净的发电技术,顺应了全球的环保大趋势。

当前,世界著名的汽车厂商,为发展环保型汽车,加紧更新传统的车用燃料,纷纷决定采用氢能,掀起了一场氢能汽车开发的热潮。实验证明,使用氢燃料电池的汽车排放的碳仅为常规内燃机的

30%,造成的大气污染仅为内燃机的5%,美国汽车工业协会预测,到2002年,美国将生产约50万-

100万辆氢能汽车。

除汽车外,200年开始,美国、欧洲和日本将在飞机上推广氢燃料。据欧洲空中客车飞机公司预

测,最迟将于2002年,欧洲生产的飞机可大规模采用液氢为燃料。由于液态氢的工作温度为-253℃,因此必须改进目前的飞机燃料系统。德国戴姆勒一奔驰航空公司和俄罗斯航空公司已从1996年开始进行试验,证实在配备有双发动机的喷气机中使用液氢,其安全性有足够的保证。另外,由于同等重量的氢和汽油相比,氢提供的能量是汽油的3倍,但即使液态氢也需要4倍于汽油的容积,从而飞机设计师们面临的任务是将传统的机翼设计成可以容纳更多液氢的新型构造。

氢能的开发与应用研究在我国尚处于起步阶段,但随着技术进步,环境对清洁能源的要求不断提

高,氢能利用是发展的必然趋势,对氢源供应的要求必将日益增加。在发展过程中,应结合我国情况

积极开展扩大氢源、降低价格的研究,以便取得较好的经济效益和社会效益。

4、结束语

不久的将来,"氢经济社会"节省下石油、煤炭等化石燃料资源,基本废除内燃机动力系统,实现无污染排放,缓解温室效应,让环境更洁净、空气更清新。同时,氢能的使用也会带动可再生能源设备:电解水设备、燃料电池、储氢器等一系列新兴制造产业,全面推动经济发展。而核聚变电站、太阳能电站、风力电站及潮汐电站的发展又可以与氢能技术进一步结合,把人类利用能源的水平提高到新的水平。

总之,氢能的研究与开发有广宽的前景,随着氢能应用领域的逐步成熟与扩大,必然推动制氢方

法研究与开发。适合我国国情的廉价的氢源供应又将会进一步促进氢能的应用,为改善环境造福人

民作出贡献。

辛勤的含羞草
留胡子的荔枝
2025-04-20 03:34:34
氢能被视为21世纪最具发展潜力的清洁能源,人类对氢能应用自200年前就产生了兴趣,到20世纪70年代以来,世界上许多国家和地区就广泛开展了氢能研究。 早在1970年,美国通用汽车公司的技术研究中心就提出了“氢经济”(Hydrogen Economics)的概念。1976年美国斯坦福研究院就开展了氢经济的可行性研究。20世纪90年代中期以来多种因素的汇合增加了氢能经济的吸引力。这些因素包括:持久的城市空气污染、对较低或零废气排放的交通工具的需求、减少对外国石油进口的需要、CO2排放和全球气候变化、储存可再生电能供应的需求等。氢能作为一种清洁、高效、安全、可持续的新能源,被视为21世纪最具发展潜力的清洁能源,是人类的战略能源发展方向。世界各国如冰岛、中国、德国、日本和美国等不同的国家之间在氢能交通工具的商业化的方面已经出现了激烈的竞争。虽然其它利用形式是可能的(例如取暖、烹饪、发电、航行器、机车),但氢能在小汽车、卡车、公共汽车、出租车、摩托车和商业船上的应用已经成为焦点。由于氢能利用过程中CO2的零排放这一优势,其能源供给及转换技术已被认真加以评估。氢能能够通过从化石燃料或生物物质(包括城市废物等)中获取氢原子而得到,或者通过用化石发电,无碳能源电解水得到。后种方式通常花费更为昂贵并且产品利用率仅能达到4%。虽然如此,这种基于混合资源的电解氢会增加CO2的排放,因为此种方法通常增加了低效、碳基能源产品的产量。在近几年内,除了在斯堪的纳维亚(半岛)、巴西和加拿大这些地区有价格低廉而又丰富的水力电能,从天然气、甲醇、重油或MSW中获取氢的成本是最低的。早期在岛屿应用的有冰岛、夏威夷岛、瓦努阿图、大西洋群岛,氢能的应用具有特别的吸引力,然而即使包括CO2的回收和封存的成本,在大型市场当中从化石燃料中提取氢产品的成本仍然比电解氢的成本低。 随着国际气候变化和对石油进口依赖程度的不断加深,导致人们对氢能市场生存能力发展的普遍兴趣。虽然日本是世界上第一个以审慎的态度为世界能源网络工程投入2亿美元开展氢能研究的国家(研究计划年限为1993~2002年),在其之后,又兴起了大量寻求构建氢经济的国家。从历史的角度上说,能源观念的转变需要花费几十年才能实现,一定范围内政府、跨国公司和个人企业对氢能产业的推动将是加速能源转换的必要因素。已有的一些有关氢能研发顺序的问题也会影响氢能经济的发展方向。举例来说,氢生产集中与分散,研究、发展和氢能汽车的营销,燃料电池技术的发展与内燃机,基础设施的改进包括燃料运输和建立燃料供应站等等,氢能商业化和市场渗透往往依赖于这些因素相互间错综复杂的影响,也影响它的成本、效率、能量存储密度和交通工具的成本、性能和安全性,而且在一个地区氢能和燃料电池发展突破将不可避免地影响其他地区全球性的经济发展计划。 国际能源机构(IEA)自1977年发起建立氢能源协定以来,就已经认识到氢经济的潜在价值。而且该组织也认识到氢能源的技术潜力有助于提供一种稳定的,持续的能源供应,并能减少二氧化碳的排放。因此,最近的计划主要是对成员国间合作研究的支持,支持的主要研究方向包括:氢能产品的成本效益、氢能产品的运输,氢能产品的分配,氢能产品的后期利用和基于可更新能源的储存。目前,国际能源机构氢能源研究重点是:光电电池电解,风和生物能资源,金属氢化物和碳纳米结构储存方式以及一体化模型工具研究。这些研究和推广计划已经在德国,意大利,瑞士,西班牙,美国,加拿大得到了相应的支持。然而,这些研发不可能在短期内对氢能源系统商业发展产生重大影响。 趋向于效益成本氢能技术商业性发展的下一步可能会由国际氢能经济合作组织(IPHE)来促进。该组织由美国能源部主持,于2003年11月18~21日在华盛顿区的一次会议上建立,参与者与成员国包括澳大利亚,巴西,加拿大,中国,欧洲委员会,法国,德国,冰岛,印度,意大利,日本,韩国,挪威,俄罗斯,英国和美国,最初的秘书处设在美国能源部(DOE)。该组织将会与国际能源机构合作开展相关活动,但它主要是为组织和实施研发合作及其活动提供一种协调机制。它寄希望于在2020年前,为参加国的消费者提供一种实用性的选择:到2020年消费者能够购买到一辆既有竞争价格、又安全方便的进行燃料补给的氢能动力汽车。来自Shell Hydrogen的一位代表估计,到2020年投资200亿美元仅能支持欧洲2%氢能动力汽车所需。 IPHE组织的工作将会反映到成员国有关能源供应的政策。这样,IPHE最初的有关氢能源类型的设想是一个由化石燃料、核能和可再生能源组成的混合体,这一设想也就反映了早期讨论过的国家能源混合形式及其相关政策。美国的政策就曾受到一家新的绿色氢能联盟的批评,这个联盟由环保集团和其他一些非盈利组织组成。但到目前为止,只有冰岛和巴西有一个针对可再生能源的具体路线。其他大多数成员国则认为有关技术选择和能源应该保持开放。概述与结论 尽管氢能源的发展得到了全世界广泛的关注,但是只有两家汽车公司和两家主要的政治机构为氢能、燃料电池或汽车产品生产制定了特定的目标和时间表。DaimberChrylse公司宣布了将在2010年之前生产10万辆氢能燃料电池汽车的计划,而GM公司则声称将生产这个数量的10倍。然而,这两家汽车制造商对他们最初的宣称感到懊悔,因为事实上没有实现此目标的机会。其他汽车制造商似乎也有类似的目标转移。有4.54亿混合人口的欧联盟有计划要引进这些汽车,要使它们的整个"路上舰队"到2030年能达到15%,到2040年则会在此数额上至少再翻一番,然而这个数额还不是所提的目标。 在氢能和燃料电池被大规模应用于机动车辆之前,巴西以及东亚等地区将是一个该类型机动车辆被应用的重要市场范例。即便如此,2030年之前是否将会有对氢能汽车的大量需求还值得怀疑,除非GM公司或者另外的汽车制造商在设法出售这种汽车方面取得巨大成功。特定目标和时间表的缺乏是北美的一个问题。 现在主要的关注点是氢能发展的潜在的可持续性,在接下来的几十年中,大多数计划都提出产品要以如天然气或煤炭等相对便宜的能源为基础。这样,即使碳隔离技术是可行的,从化石燃料中提取氢能也不能够长期进行。只有巴西和冰岛设想到2030年前,提高从可再生能源中获取氢能的百分比,尽管这些特殊的计划都是模糊不清的。在其它地方,主要的正在形成的氢能可再生能源需求市场将起到十分重要的作用,而且对化石燃料的限制也很有作用。这样,世界在迎来一个真正出现并可持续的氢能革命之前还需要行进很长的一段路程。 资料: http://xyli621.blog.163.com/blog/static/233717820070119136934/