乙酰乙酸结构式:C6H10O3。
乙酰乙酸是最简单的β-酮酸,得到的方法很简单,由乙酰乙酸乙酯水解得到。 酮酸是分子中同时含有羧基和酮基的化合物。
不稳定,加热到100°C时便迅速分解为丙酮和二氧化碳。
具有弱酸性。乙酰乙酸在碱溶液中更加稳定。37°C时,酸性溶液中的乙酰乙酸半衰期为140分钟,在碱性溶液中则为130小时。
乙酸:
乙酸在自然界分布很广,例如在水果或者植物油中,但是主要以酯的形式存在。在动物的组织内、排泄物和血液中以游离酸的形式存在。许多微生物都可以通过发酵将不同的有机物转化为乙酸。
乙酸是醋的主要成分,而醋几乎贯穿了整个人类文明史。乙酸发酵细菌(醋酸杆菌)能在世界的每个角落发现,每个民族在酿酒的时候,不可避免的会发现醋——它是这些酒精饮料暴露于空气后的自然产物。如中国就有杜康的儿子黑塔因酿酒时间过长得到醋的说法。
糟糕的钥匙
2025-04-19 23:37:25
1:脱羧反应--乙酰乙酸不稳定,很容易就会失去一分子二氧化碳发生脱羧反应
2:显色反应--乙酰乙酸存在酮式与烯醇式的互变异构,和三氯化铁反应显紫红色
3:酯化反应--乙酰乙酸不稳定,实验室一般将其酯化变成乙酰乙酸乙酯
4:加成反应--因为乙酰乙酸存在烯醇式即存在碳碳双键,故可以和溴单质加成,使溴的四氯化碳溶液褪色
酷酷的玉米
2025-04-19 23:37:25
弱酸。乙酰乙酸和乙酸都是弱酸酸性,乙酰乙酸在碱溶液中更加稳定。37°C时,酸性溶液中的乙酰乙酸半衰期为140分钟,在碱性溶液中则为130小时。乙酸的羧基氢原子能够部分电离变为氢离子(质子)而释放出来,导致羧酸的酸性。
落后的画板
2025-04-19 23:37:25
乙酰乙酸由β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶催化生成乙酰乙酰辅酶A,分别消耗0和2分子ATP
乙酰乙酰辅酶A由硫解酶催化,生成2分子乙酰辅酶A,无能量代谢
乙酰辅酶A理论上经TCA循环一周生成2分子CO2,四次脱氢和一次底物水平磷酸化共产生12分子ATP,2分子乙酰辅酶A产生24分子 ATP,
此反应共产生ATP为27分子,ATP消耗为2分子,故合计产生ATP为24+3-2=25分子
忧郁的水池
2025-04-19 23:37:25
四个。乙酰乙酸的化学式是C4H6O3,共有4个碳原子,乙酰乙酸是酮体的主要成分之一,酮体来源于游离脂肪酸在肝脏的氧化代谢产物,当糖代谢障碍时,脂肪分解加速,不能充分氧化,产生大量酮体,超过肝组织利用速率,血中酮体增加。
洁净的眼睛
2025-04-19 23:37:25
合成酮体的关键酶是HMG CoA合成酶。
酮体的生成:以乙酰CoA为原料,在肝线粒体经酶催化先缩合,后再裂解而生成体,除肝之外,肾也含有生成酮体的酮体系。酮体的合成过程可分三步进行。
1、由两分子乙酰CoA在硫解酶的作用下缩合生成乙酰乙酰CoA,同时释放出一分子CoA-SH。
2、乙酰乙酰CoA再与一分子乙酰CoA结合生成6个碳的3-羟甲基戊二酸单酰CoA(HMGCoA),并释放出CoA-SH,此反应是由HMGCoA合成酶催化的,该酶在肝线粒体含量极高。
3、乙酰乙酸被还原生成β-羟丁酸,该还原反应是由紧密结合在线粒体内膜上的β-羟丁酸脱氢酶(此酶在肝中活性极高)催化,还原反应所需的氢由NADH提供。该反应速度取决于NADH/NAD+之比值。部分乙酰乙酸还可缓慢地自发脱羧,亦可经乙酰乙酸脱羧酶催化脱羧生成酮。
扩展资料:
胆固醇和酮体的合成原料都是乙酰CoA ,2分子乙酰CoA由乙酰乙酰CoA硫解酶催化,生成乙酰乙酰CoA。后者在HMG CoA 合酶作用下生成HMG CoA(羟甲基戊二单酰CoA)。
HMG CoA在HMG CoA裂解酶催化下经多步反应生成酮体。HMG CoA在HMG 还原酶催化下经多步反应生成胆固醇。可见HMG CoA合酶既参与酮体的合成,也参与胆固醇的合成。
酮体的利用:
酮体被氧化的关键是乙酰乙酸被激活为乙酰乙酸辅酶A,激活的途径有两种:
1、在肝外组织细胞的线粒体内,β-羟丁酸经β-羟丁酸脱氢酶作用,被氧化生成乙酰乙酸,乙酰乙酸与琥珀酰CoA在β-酮脂酰CoA转移酶(β-ketoacyl CoA transferase)(3-氧酰CoA转移酶),即琥珀酰CoA;乙酰乙酸辅酶A转移酶催化下,生成乙酰乙酰CoA,同时放出琥珀酸。
2、另一途径是在有HSCoA和ATP存在时,由乙酰乙酸硫激酶催化,使乙酰乙酸形成乙酰乙酰辅酶A,后者再经硫解生成两分子乙酰CoA。乙酰CoA进入三羧酸循环被彻底氧化。
现实的百褶裙
2025-04-19 23:37:25
酮体(acetone bodies)是脂肪酸在肝脏进行正常分解代谢所生成的特殊中间产物,包括有乙酰乙酸(acetoacetic acid约占30%),β-羟丁酸(β�hydroxybutyric acid约占70%)和极少量的丙酮(acetone)。正常人血液中酮体含量极少(约为0.8?.0mg/dl,0.2�2mM),这是人体利用脂肪氧化供能的正常现象。但在某些生理情况(饥饿、禁食)或病理情况下(如糖尿病),糖的来源或氧化供能障碍,脂动员增强,脂肪酸就成了人体的主要供能物质。若肝中合成酮体的量超过肝外组织利用酮体的能力,二者之间失去平衡,血中浓度就会过高,导致酮血症(acetonemia)和酮尿症(acetonuria)。乙酰乙酸和β-羟丁酸都是酸性物质,因此酮体在体内大量堆积还会引起酸中毒。� 1.酮体的生成过程:� 酮体是在肝细胞线粒体中生成的,其生成原料是脂肪酸β-氧化生成的乙酰CoA。首先是二分子乙酰CoA在硫解酶作用下脱去一分子辅酶A,生成乙酰乙酰CoA。在3-羟-3-甲基戊二酰CoA(hydroxy methyl glutaryl�CoA,HMG�CoA)合成酶催化下,乙酰乙酰CoA再与一分子乙酰CoA反应,生成HMG�CoA,并释放出一分子辅酶。这一步反应是酮体生成的限速步骤。 HMG-CoA裂解酶催化HMG-CoA生成乙酰乙酸和乙酰CoA,后者可再用于酮体的合成。 线粒体中的β-羟丁酸脱氢酶催化乙酰乙酸加氢还原(NADH+H+作供氢体),生成β-羟丁酸,此还原速度决定于线粒体中[NADH+H+]/[NAD+]的比值,少量乙栈酸可自行脱羧生成丙酮。 上述酮体生成过程实际上是一个循环过程,又称为雷宁循环(lynen cycle),两个分子乙酰CoA通过此循环生成一分子乙酰乙酸� 酮体生成后迅速透过肝线粒体膜和细胞膜进入血液,转运至肝外组织利用。� 2.酮体的利用过程� 骨骼肌、心肌和肾脏中有琥珀酰CoA转硫酶(succinyl�CoA thiophorase),在琥珀酰CoA存在时,此酶催化乙酰乙酸活化生成乙酰乙酰CoA。��心肌、肾脏和脑中还有硫激酶,在有ATP和辅酶T存在时,此酶催化乙酰化酸活化成乙酰乙酰CoA。 经上述两种酶催化生成的乙酰乙酰CoA在硫解酶作用下,分解成两分子乙酰CoA,乙酰CoA主要进入三羧酸循环氧化分解。丙酮除随尿排出外,有一部分直接从肺呼出,代谢上不占重要地位肝细胞中没有琥珀酰CoA转硫酶和乙酰乙酸硫激酶,所以肝细胞不能利用酮体。� 肝外组织利用酮体的量与动脉血中酮体浓度成正比,自中酮体浓度达70mg/dl时,肝外组织的利用能力达到饱和。肾酮阈亦为70mg/dl,血中酮体浓度超过此值,酮体经肾小球的滤过量超过肾小管的重吸收能力,出现酮尿症。脑组织利用酮体的能力与血糖水平有关,只有血糖水平降低时才利用酮体。酮体生成的意义� (1)酮体易运输:长链脂肪酸穿过线粒体内膜需要载体肉毒碱转运,脂肪酸在血中转运需要与白蛋白结合生成脂酸白蛋白,而酮体通过线粒体内膜以及在血中转运并不需要载体。� (2)易利用:脂肪酸活化后进入β-氧化,每经4步反应才能生成一分子乙酰CoA,而乙酰乙酸活化后只需一步反应就可以生成两分子乙酰CoA,β-羟丁酸的利用只比乙酰乙酸多一步氧化反应。因此,可以把酮体看作是脂肪酸在肝脏加工生成的半成品。� (3)节省葡萄糖供脑和红细胞利用:肝外组织利用酮体会生成大量的乙酰CoA,大量乙酰CoA 抑制丙酮酸脱氢酶系活性,限制糖的利用。同时乙酰CoA还能激活丙酮酸羧化酶,促进糖异生。肝外组织利用酮体氧化供能,就减少了对葡萄糖的需求,以保证脑组织、红细胞对葡萄糖的需要。脑组织不能利用长链脂肪酸,但在饥饿时可利用酮体供能,饥饿5?周时酮体供能可多达70%。� (4)肌肉组织利用酮体,可以抑制肌肉蛋白质的分解,防止蛋白质过多消耗,其作用机理尚不清楚。� (5)酮体生成增多常见于饥饿、妊娠中毒症、糖尿病等情况下。低糖高脂饮食也可使酮体生成增多
糖代谢和脂代谢都可生成乙酰coA,然后进入TCA循环进一步分解,其中就都有a酮戊二酸生成.
至于乙酰COA合成酮体我认为是主要存在于脂肪代谢中,是肝脏向肝外供能的方式,葡萄糖没必要大费周折转化为酮体向外供能,虽然理论上行得通
仁爱的小鸭子
2025-04-19 23:37:25
常温下不反应。
加热(化学方程式中用△表示)并有浓硫酸催化的条件下,乙醇和乙酸发生酯化反应,1molCH3CH2OH和1molCH3COOH反应历程为羧基脱去其中的羟基,醇的羟基脱去其中的氢原子,生成1mol乙酸乙酯(CH3CO-OCH2CH3,其中的官能团为酯基-COO-,酯基的碳原子碳碳单键或碳氢单键连接酸中的烃基或甲酸中的氢原子、碳氧单键连接氧原子、碳氧双键连接醇中的氧原子以及烃基)和1mol水(羧基中脱下来的羟基和醇羟基中脱下来的氢缩合)其中浓硫酸作催化剂,不与任何一种反应物相反应。方程式为:
浓H2SO4
CH3COOH + CH3CH2OH ====== CH3COOCH2CH3 + H2O
迷路的滑板
2025-04-19 23:37:25
乙酰甲酸、乙酰乙酸、乙酸甲酯这三种物质从表观上看不出来有什么区别,因为它们都是无色透明的液体,需要用其他方法鉴别。乙酰甲酸和乙酰乙酸溶于水,溶液显酸性,乙酸甲酯不溶于水,在水中分层。乙酰乙酸具有烯醇式结构可使溴的四氯化碳溶液褪色,乙酰甲酸不能使其褪色。
乙酰甲酸的化学式:C3H4O3;结构式:CH3COCOOH