为何酚上有羟基,苯环上的氢原子就不稳定?
酚羟基中的氢离开后,氧负离子会加强电子作用,使苯环电子云密度增大,容易发生亲电更换。因此,吸收电子组,可以创造一个重新进入空间位置的组,他们被称为位置指示器或第二类替代基础,因此这种替代基础会减慢苯环。
一、氢原子不稳定的原因苯环本身形成了66的共助体系,上面的替代器有邻居对准替代器和中间位置替代器的区分。简单地说,由于官能团的影响,苯环的电子云密度发生了变化,亲电替代发生了容易的变化。-NH2、-NHR、-NR2、-OH、-NHCOR、-OR这就是这种情况。该基团(如羟基)是电子基团,当邻居电子云密度变大时,邻居氢原子活跃,容易发生亲电置换,相应的邻座电子云密度变小,旁边的对位电子云密度变大等。
二、酚是什么酚是中等强度的化学毒物,与细胞原浆的蛋白质发生化学反应。低浓度时使细胞变性,高浓度时使蛋白质凝固。酚类化合物可以通过皮肤黏膜、呼吸道和消化道进入体内。低浓度会引起蓄积性慢性中毒,高浓度会引起急性中毒,导致昏迷死亡。一般来说,苯酚进入人体后,机体通过自身的解毒功能将其转化为无毒物质排出体外。摄入量超过解毒功能时才会积累,导致慢性中毒,出现头晕、头痛、精神不安、食欲不振、呕吐腹泻等症状。
综上所述,由于苯酚的用途很广泛,预防其污染的工作也很困难。生产和使用苯酚的工厂必须建立严格的操作制度,小心苯酚的腹泻。同时,要做好废水的回收利用和生物氧化处理,严禁将含酚废水排入渗透井、渗透坑,污染地下水。
其实可以这样理解:氧氢键断裂,电离出氢离子后,会生成苯氧负离子,氧上带有的负电荷可以被苯环分散(应该都知道苯环是一个共轭分散的结构吧?它具有分散电荷的作用),苯环都羟基上氧电荷的分散,共同组成更大的离域pai键,
从而使苯氧负离子的稳定性加强,所以,更有利于电离,即氧氢键易断裂。这样也就可以解释是苯环对羟基的影响了。
能从酸电离常数看出
苯酚约为10^-10,乙醇为10^-15.9(越小酸性越弱)
这是其一
另一方面,从结构上理解:
你可以了解到(见选修五),苯比“环己三烯”(即单双键交替结构)稳定,是因为苯中存在π6,6离域π键;而苯酚电离之后,氧的一对孤对电子可以参与到这个离域π键中(苯酚的氧是sp3杂化,不能参与;苯氧负离子中氧有一个能形成π键的p轨道),于是苯氧负离子就更稳定。乙醇没有这个作用,因为所有的碳都已饱和,且都为sp3杂化
供电子基团只是苯环的左右结果,我上面所说的是供电子的原因
但是夺电子效应比羧酸上羰基又弱很多,所以酸性不如羧酸。
你可以理解为苯环对直接相连含有孤对p电子的原子有夺电子效应。
而苯甲醇的羟基没有直接相连,并没有强共轭作用,反而苯甲基是供电子基团,使羟基酸性变弱。
希望对你有帮助O(∩_∩)O
反应中间生成的炭正离子的稳定性不同。亲电试剂Br2进攻苯酚的邻对,间位。邻位和对位的极限结构中,每个原子都有完整的外层电子结构,而稳定。而进攻间位得不到这种位稳定的结构。因此,苯酚的亲电取代主要发生在酚羟基的邻对位。具体的你可以翻阅有机教材看看。
看氢键,比如有两个羰基,一个变为烯醇式后,烯醇式上的羟基氢会和另一个羰基形成氢键,若氢键连成了五六元环,就可以稳定存在,否则不行,不过也有特殊的,酚也是稳定的烯醇式结构,因为他不可能变为酮式。
C=C-OH之所以不稳定,主要原因在于O的吸电子,因此,只要有更多的推电子基,可以增加稳定性。当然共轭效应也能增加稳定性(C=C加其他双键)。举个例子就是 C=C-OH ,2号炭上加甲基 会增加稳定性。
扩展资料:
酮和醛等羰基化合物具有酸性的α-质子,在不同的PH值下进行质子的转移,形成酮式和烯醇式。
所以,烯醇式是酮和醛的一种存在形式,不同的酮在溶液中,有不同的烯醇式含量,可以经由H核磁共振所测定。一般烯醇式的含量由5%至95%不等,视乎羰基化合物的结构、温度、溶剂和pH值等。
脂肪族的酮多以酮式存在,如丙酮的K值较小。乙酰丙酮的K值较大,可以烯醇式存在,原因是其烯醇结构能被生成的氢键所稳定。而苯酚则基本上以烯醇式存在,其K值极大,原因是结构中有稳定的苯环。
果糖等多羟基的酮会发生此类反应,转化为烯醇再转化为醛,因而表现出还原性。
参考资料来源:百度百科--酮式-烯醇式互变
苯酚分子由一个羟基直接连在苯环上构成。由于苯环的稳定性,这样的结构几乎不会转化为酮式结构 。
苯酚共振结构如右上图。酚羟基的氧原子采用sp2杂化,提供一对孤电子与苯环的6个碳原子共同形成离域键。大π键加强了烯醇的酸性,羟基的推电子效应又加强了O-H键的极性,因此苯酚中羟基的氢可以电离出来。
苯酚盐负离子则有如右下图共振结构:
摩尔折射率:28.13摩尔体积(m3/mol):87.8等张比容(90.2K):222.2表面张力(dyne/cm):40.9极化率:11.15