氢氧化钠和三乙醇胺硼酸脂会起化学反应吗?
晚上好,三乙醇胺硼酸酯如果按照分子式判读应该属于酯类化合物,氢氧化钠是无机强碱条件可能会使这种硼酸酯发生水解反应失去偶联防锈能力,一般情况来说像是硅烷、钛酸酯和硼酸酯都与强碱环境有禁忌配伍。水性防锈剂配方中可用其他弱碱代替氢氧化钠。
一、概 述
矿物的表面改性,主要是依靠改性剂在矿粒表面吸附、反应、活化、包覆或包膜实现的。因此,表面改性剂对于矿物的表面改性或表面处理具有决定作用。
常用于矿物表面改性的改性剂主要有各种偶联剂、表面活性剂、有机聚合物、不饱和有机酸、有机硅、金属氧化物及其盐等。几种改性剂的实用范围和主要特点见表 4 - 1。几种主要填料矿物的化学改性实践见表 4 -2。
表 4 -1 几种改性剂的实用范围和主要特点
表 4 -2 几种主要填料矿物的表面改性实践
二、偶联剂
( 一) 偶联剂的作用机理
由于非金属矿与塑料是两种不同性质的物质,它们之间有很大程度上的不相容性,再加之非金属矿与塑料等的弹性模量不一致,界面间易产生剪切应力,影响其复合材料的力学性能。偶联剂能把两种不同性质的物质通过化学作用或物理作用结合起来,即它能把无机填料和有机高分子基料两种不同性质的物质紧密地结合起来。因此,偶联剂也是无机物和有机物界面间的桥梁。
界面扩散理论认为,对作填料用的矿物进行改性处理时,所有的偶联剂不仅亲无机端应与填料表面以化学键结合,而且另一端还应能溶解、扩散于树脂的界面区域,在其与树脂大分子链发生纠缠或形成化学键,即偶联剂的亲有机端应含有较长的柔软碳氢链,以使形成柔性的有利于应力松弛的界面层,提高其吸收和分散冲击能,使复合材料具有更好的抗冲击性。
表面能理论认为,矿物填料属高能表面,为提高它和高聚物基体的相容性,必须借助偶联剂的 - R 基降低其表面能。
( 二) 偶联剂的种类
目前工业上用的矿物表面改性的偶联剂,按其化学结构可分为三大类:
硅烷类: 适用于硅酸成分较多的无机填料: 玻璃纤维、石英粉、白碳黑、云母、粘土。
钛酸酯类: 适用的无机填料较广。
锆铝酸盐偶联剂。
1. 硅烷偶联剂
( 1) 硅烷偶联剂的结构
图 4 -6 甲氧基及乙氧基硅烷偶联剂的结构式
硅烷偶联剂的通式为RSiX3。
通式中R代表与聚合物分子有亲和力或反应能力的有机官能团,例:氨基—NH2,乙烯基—CH2CH,甲基—CH3,环氧基—CH—CH2,氰基—CN等,可与有机分子反应或物理缠绕。
X代表水解性基团,能为水解的烷氧基,例:甲氧基—OCH3,乙氧基—OC2H5等。硅烷偶联剂的结构式如图4-6所示。
X基团水解后,在一定的条件下能与无机物表面的化学基团(OH—)起反应,形成牢固的化学键。这种具有两性结构的物质能把两种性质的物质结合起来。
进行偶联时,首先X基水解形成硅醇,然后再与无机填料表面上的羟基反应,形成氢键并缩合成—SiOM共价键(M表示无机填料表面)。同时,硅烷各分子的硅酸又相互缔合形成网状结构的膜覆盖在填料表面,使无机填料有机化。
( 2) 硅烷偶联剂的作用机理
经硅烷偶联剂处理的填料或增强材料 ( 如玻纤) 在提高复合材料性能方面的显著效果,早已得到确认,偶联剂的作用机理目前有很多理论,其中化学键理论是最老但仍然是最著名的理论。该理论认为: 硅烷偶联剂含有化学官能团,它的一端与硅质填料 ( 如玻璃) 表面的硅醇基团反应生成共价键另一端又能与树脂生成共价键。并提出了简单的偶联机理模型,见图 4 -7。
图 4 -7 硅烷偶联剂的作用机理模型图( 据吴森纪等,1990)
硅烷偶联剂的疏水基性质也符合“相似相亲”的原则。有机官能团R为乙烯基和甲基丙烯酰基时,对不饱和的聚酯和丙烯酸树脂特别有效当R为环氧基团时,对环氧树脂效果特好,同时也适用于不饱和树脂。含氨基的硅烷能和环氧树脂、聚氨酯发生化学反应,对酚醛树脂和三聚氰胺树脂的固体也有催化作用,故适用于环氧、酚醛、三聚氰胺、聚氨酯等树酯含巯基的硅烷对硫化橡胶的偶联效果最佳,故含巯基的硅烷偶联剂是橡胶工业应用最广的品种。
亲水基,也称水解性基团,该基团遇水可分解变成活性基团硅醇(≡Si—OH)。通过硅醇和无机矿物表面反应,形成牢固的化学结合或吸附于矿物表面。当X为—OCH3和—OC2H5时,水解速度缓慢,且水解产物醇为中性物质,因此可用水为介质进行表面改性。因乙氧基的体积比甲氧基的大,乙氧基硅烷在水中的溶解度较小,所以,目前趋向采用含乙氧基类硅烷偶联剂。除此以外,还以—OC2H4OCH3作X基团,不仅保留其水解性,而且还能提高水溶性、亲水性,应用时更为方便。应用硅烷偶联剂的方法有两种:一是将硅烷配成水溶液,用它处理无机填料或颜料后,再与有机高聚物或树脂混合,即预处理法另一种方法是将硅烷与填料及有机高聚物基料混合(即迁移法)。前一种方法处理效果较好,而后一种工艺较简单。
硅烷偶联剂的用量与偶联剂的品种及填料的比表面积等有关,可按下式计算:
偶联剂的用量=填料量(g)×填料比表面积(m2/g)/单位质量偶联剂的最小包覆面积(m2/g)。常见硅烷偶联剂的名称、化学结构及最小包覆面积见表4-3。
表4-3常见硅烷偶联剂的名称、化学结构及最小包覆面积
(据郑水林,1995吴森纪等,1990略有改动)
硅烷偶联剂可用于许多无机矿物填料或颜料的表面处理,其中对含硅酸成分较多的石英粉、玻璃纤维、白炭黑等的效果最好。
2.钛酸酯偶联剂
钛酸酯偶联剂是美国Kenrich石油化学公司在20世纪70年代开发的一类新型偶联剂,至今已有几十个品种,是无机填料和颜料等广泛应用的表面改性剂。
钛酸酯偶联剂可用通式(RO)mTi—(OX—R'—Y)n表示。
式中:1≤m≤4,m+n≤6其中:
RO是可水解的短链烷氧基,能与无机物表面羟基起反应,从而达到化学偶联的目的。m是该基团数。
Ti是偶联剂分子的核心,—TiO—为酯基和烷基转移和交换功能基团,是钛酸酯的有机骨架,和聚合物羟基间进行交换,起酯基和烷基转移反应。钛和氧的结合松弛,体系中的有机酸容易游离出来作催化或缓效剂影响反应。
OX可以是羧基、烷氧基、磺酸基、磷基等,这些基团很重要,决定钛酸酯所具有的特殊功能,如磺酸基赋予有机物一定的触变性焦磷酰氧基有阻燃、防锈和增强黏结的性能亚磷酰氧基可提供抗氧、耐燃性能等,因此通过OX的选择,可以使钛酸酯兼具偶联和其他特殊性能。
R'是长碳链烷基,碳数常为12~18。它和聚合物的链发生缠绕作用,借助分子间的力结合在一起,从而可传递应力,提高冲击强度、剪切强度和伸长率。此外,长链烃还可改变矿物的表面能,降低体系黏度,使高充填聚合物也能显示出较好的熔融流动性,所以这种偶联剂特别适用于聚烯烃之类的热塑性树脂。
Y为羟基、氨基、环氧基或末端氢原子等,这些活性基团连接在钛的有机骨架上,能使偶联剂和有机聚合物进行化学反应,通过偶联剂使矿物和有机基体相结合。
n为官能团数目,当n>2时,为多官能团的钛酸酯,但m+n<6。
根据分子结构及其偶联机理,钛酸酯偶联剂分四种类型:单烷氧基型,单烷氧基焦磷酸酯型,螯合型和配位型。
(1)单烷氧基型钛酸酯偶联剂
适合于不含游离水,只含化学键合水或物理键合水的干燥填料如碳酸钙,以及水合氧化铝等。单烷氧基型钛酸酯偶联剂除含三乙醇胺基(既属单烷氧基型又属螫合型)、焦磷酸酯基两类外,大多耐水性差,只能在有机溶剂中溶解和包覆粉体物料。操作方法一般如下:先将单烷氧基型钛酸酯偶联剂溶解在少量甲苯、二甲苯等烃类溶剂中,然后和粉体物料在室温下搅拌均匀,适当升温,在90℃左右继续搅拌混合半小时以上,保证钛酸酯偶联剂与粉体表面偶联作用。如果没有条件加温,偶联作用在室温下也能进行,只是比较缓慢,最好在室温下搅拌2小时然后放置过夜后再使用。一般讲,溶剂用量大,对粉体的包覆效果较好,但多余的溶剂必须除去。钛酸酯偶联剂用溶剂稀释十分重要,它能使偶联剂均匀包覆在粉体的表面。在实际生产中,根据具体情况,适量加入稀释剂,才能达到均匀包覆的目的。
(2)单烷氧基焦磷酸酯基型偶联剂
该类偶联剂比一般单烷氧基型钛酸酯耐水性好,适合于含湿量较高的矿物,如陶土、滑石粉等。在单烷氧基焦磷酸酯基型钛酸酯偶联剂中,除单烷氧基于矿物表面的烃基反应形成偶联剂外,焦磷酸酯基还可分解形成磷酸,结合一部分水。
(3)螯合型
螯合型钛酸酯偶联剂具有极好的水解稳定性,适用于高含湿量填料和含水聚合物体系,且可在高温状态下使用。
螯合型钛酸酯偶联剂耐水性好,它可以溶解在有机溶剂中包覆粉体物料,也可以在水相中包覆粉体物料。但是,螯合型钛酸酯偶联剂大多不溶于水。一般可以采取3种方法使它分散在水相中:a.用高速分散器使之分散于水b.使用表面活性剂使它分散于水c.含有磷酸基、焦磷酸基及磺酸基的螯合型钛酸酯可用胶类试剂使之季胺盐化后溶解于水。
(4)配位型
配位体型钛酸酯偶联剂是为避免四价钛酸酯在某些体系中的副反应,如在聚酯中的脂交换反应,在环氧树酯中与烃基反应,在氨酯中与聚醇或异氰酸酯反应等而研制的。可见它适用多种矿物和聚合物,它对矿物的作用类似单烷氧基型钛酸酯偶联剂。
配位型钛酸酯耐水性好。既可溶于有机溶剂后再包覆粉体物料,也可在水相中包覆粉体物料。配位型钛酸酯大多数不溶解于水,通常使用表面活性剂、水性助溶剂使之溶解于水,或高速搅拌使其乳化分散在水中。
钛酸酯偶联剂的用量是要使钛酸酯偶联剂分子中的全部异丙氧基与无机填料或颜料表面所提供的羟基或质子发生反应,过量是没有必要的。钛酸酯偶联剂的大致用量为填料或颜料用量的0.1%~3.0%左右。被处理填料或颜料的粒度越细,比表面积越大,钛酸酯偶联剂的用量就越大。最适当的用量可以用黏度测定法求得:高熔点的聚合物通常用低分子量的液体,如矿物油代替做模型试验,钛酸酯用量从填料重量的0.25%,0.5%,0.75%,1.0%,1.5%,2.0%及3.0%等做试验,黏度下降最大点,就是较合适的钛酸酯用量。
钛酸酯偶联剂在使用过程中应特别注意以下几个问题:
1)严格控制使用温度,防止钛酸酯分解。
2)尽量避免与具有表面活性的助剂并用,因为它们会干扰钛酸酯偶联剂界面处的偶联反应。如果必须使用这些助剂时,应在填料、偶联剂和聚合物充分混合作用后再加入这些助剂。
3)加料顺序应注意避免首先与酯类增塑剂接触,以免发生酯交换反应而失效。
4)注意分散均匀。因钛酸酯偶联剂一般用量为0.5%~3%,不易与大量填料均匀混合,可采用适量稀释剂及喷雾方法使其均匀分散混合。
5)注意技术结合,提高偶联效果,如钛酸酯与硅烷偶联剂并用能产生协同效应。
三、表面活性剂
1.高级脂肪酸及其盐
高级脂肪酸属于阴离子表面活性剂,其分子通式为RCOOH。分子一端为长链烷基(C16~C18),其结构和聚合物相似,因而与聚合物有一定的相容性分子一端为核基,可与无机填料或颜料表面发生物理、化学吸附作用。因此,用高级脂肪酸及其盐,如硬脂酸处理无机填料或颜料类似偶联剂的作用,有一定的表面处理效果,可改善无机填料或颜料与高聚物基料的亲和性,提高其在高聚物基料中的分散度。此外,由于高级脂肪酸及其盐类本身具有润滑作用,还可使复合体系内摩擦力减小,改善复合体系的流动性能。
无机填料或颜料常用的高级脂肪酸及其金属盐类表面处理剂有:硬脂酸、硬脂酸钙、硬脂酸锌等,用量约为填料或颜料重量的0.5%~3%,使用时可直接与无机填料、颜料混合分散均匀,也可将硬脂酸稀释后喷洒在无机填、颜料表面,搅拌均匀后再烘干,除去水分。
2.高级胺盐
属于阳离子表面活性剂,其分子通式为RNH(伯胺)、R2NH(仲胺)、R3NH(叔胺)等。高级胺盐的烷烃基与聚合物的分子结构相近,因此与高聚物基料有一定的相容性,分子另一端的氨基可与无机填料或颜料等粉体表面发生吸附作用。
非离子型表面活性剂对填充(或复合)体系的作用机理与各类偶联剂相似。亲水基因和亲油基因分别与填料和高聚物基料发生相互作用,加强二者的联系,从而提高体系的相容性和均匀性。二极性基团之间的柔性碳链起增塑润滑作用,赋予体系韧性和流动性,使体系黏度下降,改善加工性能。如用高级脂肪酸聚氧乙烯醚类作处理剂对硅灰石粉进行的表面改性结果表明,改性后大大提高了硅灰石在PVC电缆中的填充性能。
除了上述表面活性剂外,磷酸酯也可用于无机粉体的表面处理,如单脂型磷酸酯用于滑石的表面包覆处理,可改进滑石粉填料与高聚物(如聚丙烯)的界面亲和性,改善其在有机高聚物基料中的分散状态,并提高高聚物基料对填料的润湿能力。
四、不饱和有机酸
不饱和有机酸作为无机填料的表面改性剂带有一个或多个不饱和双键及一个或多个羟基,碳原子数一般在10个以下。常见的不饱和有机酸是:丙烯酸、甲基丙烯酸、丁烯酸、肉桂酸、山梨酸、2-氯丙烯酸、马来酸、醋酸乙烯、醋酸丙烯等。一般来说,酸性越强,越容易形成离子键,故多选用丙烯酸和甲基丙烯酸。各种有机酸可以单独作用,也可以混合使用。
五、有机硅
有机硅是以硅氧烷链为憎水基,聚氧乙烯链、氨基、酮基或其他极性基团为亲水基的一类特殊类型的表面活性剂,俗称硅油或硅树脂。其主要品种有聚二甲基硅氧烷、有机基改性硅氧烷及有机硅与有机化合物的共聚物等。
六、无机表面改性剂
氧化钛、氧化铬、氧化铁、氧化铝等金属氧化物常用作沉淀法(包膜)制备云母珠光颜料的表面改性剂Al2O3、SiO2等常用做无机颜料的表面处理,以提高颜料的保光性、耐候性、改善着色力和遮盖力等,如用SiO2包覆钛白粉等。沉淀法表面包膜工艺常用无机表面改性剂,其改性的物料(基质)一般也是无机物。
例1:云母铁
水解:FeCl3+3H20→Fe(OH)3+3H+
覆盖:Fe(OH)3覆盖在云母的表面
焙烧:Fe(OH)3→Fe2O3+3H2O→云母铁
例2:云母钛
工业生产中常用TiOSO4,TiOSO4在水解过程中,要产生一种偏钛酸H2TiO3的物质,沉淀覆盖在云母鳞片上,形成一层H2TiO3均匀的薄膜,再将覆盖有H2TiO3薄膜的云母进行焙烧后,结晶出的TiO2晶体(金红石型或锐钛矿型)薄膜,形成云母钛珠光颜料。其反应过程为:
水解:TiOSO4+H2O(水解)→TiO2·XH2O+H2SO4
覆盖:TiO2·XH2O(水合TiO2)覆盖在云母的表面
焙烧:TiO2·XH2O→TiO2结晶→云母钛
工艺流程见图4-8。
图4-8 水解涂钛法生产珠艺云母粉的工艺流程
七、覆膜用树脂涂层剂
这是利用高聚物或树脂等对粉体表面进行“覆膜”而达到表面改性的方法。如用酚醛树脂或呋喃树脂等涂敷石英砂以提高精细铸造砂的黏结性能。这种涂敷后的铸造砂既能获得高的熔模铸造速度,又能保持模具和模芯生产中得到高抗卷壳和抗开裂性能用呋喃树脂涂敷的石英砂用于油井钻探可提高油井产量。
涂敷改性是一种对粉体表面进行简单处理的方法。精密铸造用的型砂可以用树脂对原砂表面进行覆膜改性处理。根据覆膜工艺可分为冷法和热法两种。
1.冷法覆膜
冷法覆膜是在室温下进行。其方法是:先将粉状树脂与石英砂混匀,然后加入溶剂(如工业酒精、丙酮或糠醛),溶剂加入量根据混砂机是否封闭而定。对于封闭式混砂机,酒精用量为树脂量的40%~50%若混砂机不能封闭,则为70%~80%。加入溶剂后继续混合到溶剂挥发完毕,将涂覆了树脂膜的砂经干燥后,破碎和过筛即得覆膜砂产品。这种方法的有机溶剂耗量大,仅用于小规模生产。
2.热法覆膜
是将砂子加热后进行的包敷。方法是先将石英砂加热到140~160℃,而后与树脂在混砂机中混匀,其中树脂用量为石英砂用量的2%~5%。这时树脂被热砂熔化,包覆在砂粒表面,随温度降低而变粘。此时加入乌洛托品水溶剂,使乌洛托品分布在砂粒表面,并使砂急冷(乌洛托品作为催化剂可在壳模形成时使树脂固化),再加硬脂酸钙(防止结块)混数秒钟后出砂,然后粉碎、过筛、冷却后即得覆膜砂产品。此法效果较好,适合大规模生产,但工艺控制较为复杂,并需用专门的混砂设备。精密铸造中用作壳芯的树脂覆膜砂配方实例见表4-4。
表4-4精密铸造中用作壳芯的树脂覆膜砂配方实例
纳米活性碳酸钙的工业制备方法。该方法在一定浓度的Ca(OH)2的悬浮液中通入二氧化碳气体进行碳化。通过对Ca(OH)2悬浮液的温度、二氧化碳气体的流量控制碳酸钙晶核的成核速率;在碳化至形成一定的晶核数后,由晶核形成控制转化为晶体生长控制,此时加入晶形调节剂控制各晶面的生长速率,从而达到形貌可控;继续碳化至终点加入分散剂调节粒子表面电荷得均分散的立方形碳酸钙纳米颗粒;然后将均分散的立方形纳米碳酸钙颗粒进行液相表面包覆处理。所获得的纳米活性碳酸钙粒子在25~100nm之间可控,立方形,比表面大于25m2/g,粒径分布 GSD为1.57,吸油值小于28g/100gCaCO3,且无团聚现象。所获得的产品性能优异,可作为高档橡胶、塑料以及汽车底漆中的功能填料。
1.一种纳米活性碳酸钙的工业制备方法,其特征在于,该方法包括如下步骤:(1)在 Ca(OH)2的悬浮液,通入含有CO2的气体,碳化至碳化率达5~40%,加入晶型调节剂,继续碳化至pH为8.0~9.0,加入表面电荷及空间位阻调节剂,继续碳化至pH为6~7.5,生成纳米级的立方形碳酸钙;所说的晶型调节剂为磷酸盐、硫酸盐、醋酸盐、柠檬酸盐、单糖或多糖中的一种及其混合物,其加入量为浆料重量的0.05~3.0%;所说的表面电荷及空间位阻调节剂为磷酸盐、硫酸盐、氯化物、三乙醇胺、十二烷基苯磺酸钠中的一种或一种以上;表面电荷及空间位阻调节剂的加入量为CaCO3重量的0.1~4.0%;(2)将脂肪酸或水溶性钛酸酯偶联剂中的一种或两种配制成水溶液包覆剂;所说的脂肪酸为 C12~C18的脂肪酸;(3)将纳米碳酸钙浆料加热至45~95℃,然后加入包覆剂,包覆剂的加入量以碳酸钙的重量计为0.5~3.5%,包覆处理时间为0.5~3.5小时间,将浆料过滤,干燥,即获得纳米活性碳酸钙。
limestone 英[ˈlaɪmstəʊn] 美[ˈlaɪmstoʊn]
n. 石灰岩,石灰石
[例句]The local limestone is very porous.
当地的石灰岩有很多孔隙。
[其他] 复数:limestones
分类
一、按生产方法分类
根据碳酸钙生产方法的不同,可以将碳酸钙分为重质碳酸钙、轻质碳酸钙、胶体碳酸钙和晶体碳酸钙。
重质碳酸钙
重质碳酸钙(俗称,重钙,单飞粉、双飞粉、三飞粉、四飞粉)calcium
碳酸钙粉末
carbonate,heavy
分子式:CaCO3分子量100.09简称重钙,是用机械方法(用雷蒙磨或其它高压磨)直接粉碎天然的方解石、石灰石、白垩、贝壳等就可以制得。由于重质碳酸钙的沉降体积比轻质碳酸钙的沉降体积小,所以称之为重质碳酸钙。
性质:白色粉末。无臭、无味。露置空气中无变化,比重2.710。熔点1339&ordmC。几乎不溶于水在含有铵盐或三氧化二铁的水中溶解,不溶于醇。遇稀醋酸、稀盐酸、稀硝酸发生泡沸,并溶解。加热分解为氧化钙和二氧化碳。
用途:按粉碎细度的不同,工业上分为四种不同规格:单飞、双飞、三飞、四飞,分别用于各工业部门。
制法及工艺流程
包装:塑料袋包装,每袋净重50公斤。
储运注意事项储存于干燥的库房中。运输中防止袋破。不得与液体酸类共储混运。
轻质碳酸钙
轻质碳酸钙(沉淀碳酸钙)calciumcarbonate,light分子式CaCO3分子量100.09。又称沉淀碳酸钙,简称轻钙,是将石灰石等原料煅烧生成石灰(主要成分为氧化钙)和二氧化碳,再加水消化石灰生成石灰乳(主要成分为氢氧化钙),然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,最后经脱水、干燥和粉碎而制得。或者先用碳酸纳和氯化钙进行复分解反应生成碳酸钙沉淀,然后经脱水、干燥和粉碎而制得。由于轻质碳酸钙的沉降体积(2.4-2.8mL/g)比重质碳酸钙的沉降体积(1.1-1.4mL/g)大,所以称之为轻质碳酸钙。
性质:白色粉末。无味,无臭。比重约2.71。在825~896.6&ordmC分解。熔点1339&ordmC。有无定形和结晶形两种形态,结晶形中又可分为斜方晶系和六方晶系,呈柱状或菱形。难溶于水和醇。溶于酸,同时放出二氧化碳,呈放热反应。也溶于氯化铵溶液中。在空气中稳定,有轻微的吸潮能力。
用途:可用作橡胶、塑料、造纸、涂料和油墨等行业的填料。广泛用于有机合成、冶金、玻璃和石棉等生产中。还可用作工业废水的中种剂、胃与十二指肠溃疡病的制酸剂、酸中毒的解毒剂、含SO2废气中的SO2消除剂、乳牛饲料填加剂和油毛毡的防粘剂。也可用作牙粉、牙膏及其它化妆品的原料。
制法及工艺流程
碳化法:系将石灰石与白煤按一定比例混配后,经高温煅烧、水消化、二氧化碳碳化,再经离心脱水、干燥、冷却、粉碎、过筛即得成品。
CaCO3==CaO+CO2↑
CaO+H2O→Ca(OH)2
Ca(OH)2+CO2→CaCO3↓+H2O
包装:麻布袋或塑料袋包装。每袋净重50公斤或25公斤。
储运注意事项:储于干燥处。避免与酸类物质接触。运输中应小心,不得散包。注意防潮。
二、按粉体粒径分类
碳酸钙产品是一种粉体,根据碳酸钙粉体平均粒径(d)的大小,可以将碳酸钙分为微粒碳酸钙(d>5μm)、微粉碳酸钙(1μm<d<5μm)、微细碳酸钙(0.1μm<d≤1μm)、超细碳酸钙(0.02μm<d≤0.1μm)和超微细碳酸钙(d≤0.02μm)。
轻质碳酸钙的粉体特点
a、颗粒形状规则,可视为单分散粉体,但可以是多种形状,如纺锤形、立方形、针形、链形、球形、片形和四角柱形。这些不同形状的碳酸钙可由控制反应条件制得。
b、粒度分布较窄。
c、粒径小,平均粒径一般为1-3μm。要确定轻质碳酸钙的平均粒径,可用三轴粒径中的短轴粒径作为表现粒径,再取中位粒径作为平均粒径。以后除说明外,平均粒径,即指平均短轴粒径。
重质碳酸钙的粉体特点
a、颗粒形状不规则,是多分散粉体。
b、粒径分布较宽。
c、粒径大,平均粒径一般为5-10μm。要确定重质碳酸钙的平均粒径,需要测定粒径分布函数和诸如颗粒沉降速度或比表面积之类的粉体现象函数。作为一种简便的方法是在电子显微镜照片上测量颗粒投影的长度和宽度,计算几何平均粒径作为表观粒径,再取中位粒径作为平均粒径。
三、按微观排列分类
根据组成碳酸钙的原子和离子的排列是否有规律,可以将碳酸钙分为晶体碳酸钙和非晶体碳酸钙。
胶体碳酸钙
胶体碳酸钙(活化碳酸钙,白艳华)calciumcarbonate,activeated,分子式CaCO3分子量100.09。又称改性碳酸钙、表面处理碳酸钙、胶质碳酸钙或白艳华,简称活钙,是用表面改性剂对轻质碳酸钙或重钙碳酸钙进行表面改性而制得。由于经表面改性剂改性后的碳酸钙一般都具有补强作用,即所谓的“活性”,所以习惯上把改性碳酸钙都称为活性碳酸钙。
性质:白色细腻、轻质粉末,粒子表面吸附一层脂肪酸皂,使CaCO3具有胶体活化性能。比重1.99~2.01。
胶体碳酸钙不溶于水,遇酸分解,灼烧变成焦黑色,放出二氧化碳并生成氧化钙。其活性比普通碳酸钙大,具有补强性。易分解于胶料之中。
用途:橡胶的填充料,可使橡胶色泽光艳、伸长率大、抗张强度高、耐磨性能良好。还用作制人造革、电线、聚氯乙烯、涂料、油墨和造纸等工业的填料。可使成品具有一定的抗张强度及光滑的外观。生产微孔橡胶时,可使其发泡均匀。
制法及工艺流程
碳化法:石灰石在高温下煅烧之后,先用水消化,再经筛滤、碳化、表面处理、干燥粉碎后,即得胶体碳酸钙成品。
CaCO3→CaO+CO2↑
CaO+H2O→Ca(OH)2
Ca(OH)2+CO2→CaCO3↓+H2O
包装:内用双层塑料袋,外用麻袋包装。每袋净重20公斤或50公斤。
储运注意事项:储存于干燥的库房中。避免与酸类物质接触。注意防潮。
晶体碳酸钙
晶体碳酸钙(calciumcarbonate,crystal)
分子式CaCO3分子量100.09
性质:纯白色,六方结晶型粉末。比容1.2~1.4毫升/克。溶于酸,几乎不溶于水。
用途:用于牙膏、医药等方面。亦可用作保温材料和其它化工原料。
制法及工艺流程
氯化钙碳化法:系将氢氧化钙与盐酸反应生成氯化钙,氯化钙用二氧化碳碳化后即得碳酸钙,再经结晶、分离、洗涤、脱水、烘干、筛选后,得结晶碳酸钙成品。
Ca(OH)2+2HCl→CaCl2+2H2O
CaCl2+2NH4OH+CO2→CaCO3+2NH4Cl+H2O
包装:内用双层塑料袋、外用麻袋或塑料编织袋包装。每袋净重20公斤。
储运注意事项:储于阴凉处,防高温。运输中防止勾挂散包。
石灰石:主要矿物成分为方解石。矿物颗粒和晶体结构不多见,表面平滑,呈小颗粒状。硬度不一,有些致密石灰石可以抛光。颜色有黑、灰、白、黄和褐色。石灰石含海水形成的石灰,故而得名。大理石、石灰石、白垩、岩石等天然矿物的主要成分是碳酸钙。
纳米碳酸钙
化学式 : CaCO3
英文名: Nano Calcium Carbonate
理化性质
纳米碳酸钙用于塑料中与树脂亲合性好,可有效增加或调节材料刚性,韧性,以及弯曲强度等,并可改善塑料加工体系的流变性能,降低塑化温度,提高制品尺寸稳定,耐热性及表面光洁性在NR,BR,SBR等橡胶体系中,容易混练,分散均匀,并可使胶质柔软,还能提高压出加工性能和模型流动性.使橡胶制品具有表面光滑,伸长率大,抗张强度高,永久变形小,耐弯曲性能好,耐撕裂强度高等特点。
纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。
纳米碳酸钙又称超微细碳酸钙。标准的名称即超细碳酸钙。纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。用于汽车内部密封的PVC增塑溶胶。可改善塑料母料的流变性,提高其成型性。用作塑料填料具有增韧补强的作用,提高塑料的弯曲强度和弯曲弹性模量,热变形温度和尺寸稳定性,同时还赋予塑料滞热性。
纳米碳酸钙用于油墨产品中体现出了优异的分散性和透明性和极好的光泽、及优异的油墨吸收性和高干燥性。纳米碳酸钙在树脂型油墨中作油墨填料,具有稳定性好,光泽度高,不影响印刷油墨的干燥性能.适应性强等优点。
造纸业是纳米碳酸钙最具开发潜力的市场。纳米碳酸钙还主要用于特殊纸制品,如女性用卫生巾、婴儿用尿不湿等。纳米活性碳酸钙作为造纸填料具有以下优点:高蔽光性、高亮度、可提高纸制品的白度和蔽光性;高膨胀性,能使造纸厂使用更多的填料而大幅度降低原料成本;粒度细、均匀,制品更加均匀、平整;吸油值高、能提高彩色纸的预料牢固性
纳米碳酸钙在涂料工业作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点。纳米级超细碳酸钙具有空间位阻效应.在制漆中,能使配方中密度较大的立德粉悬浮,起防沉降作用.制漆后,漆膜白度增加,光泽度高,而遮盖力却不降低,主要用于高档轿车漆。
橡胶工业纳米碳酸钙的主要应用市场之一。添加钠米碳酸钙的橡胶,其硫化胶升长率、撕断性能、压缩变形和耐屈性能,都比添加一般碳酸钙的高。加入用树脂酸处理的纳米碳酸钙后,有的豫胶制品撕裂强度提高4倍以上
纳米碳酸钙在饲料行业中可作为补钙剂,增加饲料含钙量;在化妆品中使用,由于其纯度高、白度好、粒度细,可以替代钛白粉。
纳米活性碳酸钙的工业制备方法。该方法在一定浓度的Ca(OH)2的悬浮液中通入二氧化碳气体进行碳化。通过对Ca(OH)2悬浮液的温度、二氧化碳气体的流量控制碳酸钙晶核的成核速率;在碳化至形成一定的晶核数后,由晶核形成控制转化为晶体生长控制,此时加入晶形调节剂控制各晶面的生长速率,从而达到形貌可控;继续碳化至终点加入分散剂调节粒子表面电荷得均分散的立方形碳酸钙纳米颗粒;然后将均分散的立方形纳米碳酸钙颗粒进行液相表面包覆处理。所获得的纳米活性碳酸钙粒子在25~100nm之间可控,立方形,比表面大于25m2/g,粒径分布 GSD为1.57,吸油值小于28g/100gCaCO3,且无团聚现象。所获得的产品性能优异,可作为高档橡胶、塑料以及汽车底漆中的功能填料。
1.一种纳米活性碳酸钙的工业制备方法,其特征在于,该方法包括如下步骤:(1)在 Ca(OH)2的悬浮液,通入含有CO2的气体,碳化至碳化率达5~40%,加入晶型调节剂,继续碳化至pH为8.0~9.0,加入表面电荷及空间位阻调节剂,继续碳化至pH为6~7.5,生成纳米级的立方形碳酸钙;所说的晶型调节剂为磷酸盐、硫酸盐、醋酸盐、柠檬酸盐、单糖或多糖中的一种及其混合物,其加入量为浆料重量的0.05~3.0%;所说的表面电荷及空间位阻调节剂为磷酸盐、硫酸盐、氯化物、三乙醇胺、十二烷基苯磺酸钠中的一种或一种以上;表面电荷及空间位阻调节剂的加入量为CaCO3重量的0.1~4.0%;(2)将脂肪酸或水溶性钛酸酯偶联剂中的一种或两种配制成水溶液包覆剂;所说的脂肪酸为 C12~C18的脂肪酸;(3)将纳米碳酸钙浆料加热至45~95℃,然后加入包覆剂,包覆剂的加入量以碳酸钙的重量计为0.5~3.5%,包覆处理时间为0.5~3.5小时间,将浆料过滤,干燥,即获得纳米活性碳酸钙
在橡胶工业
纳米级超细碳酸钙具有超细、超纯的特点,生产过程中有效控制了晶形和颗粒大小,而且进行了表面改性。因此其在橡胶中具有空间立体结构、又有良好的分散性,可提高材料的补强作用。如链状的纳米级超细碳酸钙,在橡胶混炼中,锁链状的链被打断,会形成大量高活性表面或高活性点,它们与橡胶长链形成键连结,不仅分散性好,而且大大增强了补强作用。值得注意的是,它不但可以作为补强填充料单独使用,而且可根据生产需求与其他填充料配合使用,如:炭黑、白炭黑、轻钙重钙、钛白粉、陶土等,达到补强、填充、调色、改善加工工艺和提高制品性能、降低含胶率或部分取代白炭黑、钛白粉等价格昂贵的白色填料的目的。
在涂料工业
可作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点,纳米级超细碳酸钙具有空间位阻效应,在制漆中,能使配方密度较大的立德粉悬浮,起防沉降作用。制漆后,漆膜白度增加,光泽高,而遮盖力却不下降,这一特性使其在涂料工业被大量推广应用。
在塑料工业
由于纳米级超细碳酸钙具有高光泽度、磨损率低、表面改性及疏油性,可填充聚氯乙烯、聚丙烯和酚醛塑料等聚合物中,又被广泛应用于聚氯乙烯电缆填料中。
在造纸工业
可用于涂布加工纸的原料,特别是用于高级铜板纸。由于它分散性能好,粘度低,能有效的提高纸的白度和不透明度,改进纸的平滑度、柔软度,改善油墨的吸收性能,提高保留率。
在油墨行业
作为填料,可替代价格较高的胶质钙,并可提高油墨的光泽度和亮度。
在其他行业
纳米级超细碳酸钙用于饲料行业,可作为补钙剂,增加饲料的含钙量,在化妆品中使用,可替代钛白粉。
HG-01型:主要应用于PVC、PE、PP、PP-R、ABS、PA等树脂,以及橡胶行业、油漆和特种涂料
HG-01型是经过表面活性处理的纳米活性碳酸钙,作为功能性补强材料,广泛应用于PVC、 PE、PP、PP-R、ABS、PA等树脂,以及橡胶行业、油漆和特种涂料等领域。可替代钛白20%左右,降低生产成本,提高经济效益。在塑料制品中有很好的增强增韧性能,具有相当的热稳定性和分散性,可显著提高材料的刚性、韧性、弯曲强度,使产品拥有良好的尺寸稳定性,改善体系流变性、降低收缩率,制品表明细密,光泽好,拉伸强度及抗划伤、抗冲击强度均有很大程度的提高。该型号产品被广泛应用于塑料管材、型材,塑钢门窗、电缆、电缆护套、给水管、汽车保险杠及室内配件等及空调、冰箱、电视机、电脑、洗衣机等家用电器的产品塑料外壳面板。
HG-02:主要应用于高档涂料油墨行业
HG-02型是经过表面活性处理的纳米活性碳酸钙,应用于高档油墨产品,其作为主体颜填料有良好的分散性、透明性、提高光泽和遮盖力。具有优异的吸收性和高干性,使用于告诉印刷。可调节油墨颜色、浓稠度等性能,调节墨性,降低成本。
HG-03型:主要应用于合成橡胶行业。
HG-03)型是经过表面活性处理的纳米活性碳酸钙,作为功能性材料应用于合成橡胶具有如下特点:
1. 良好的加工性能,吃料速度快,混炼容易,硫化时间短。
2. 有很好的补强性能,可代替白炭黑和炭黑,提高橡胶制品的多项力学性能,如:抗张性、抗撕裂性、耐磨性、防腐性,显著提高橡胶制品的曲扰性、抗老化性,改善橡胶制品与金属界面结合性,提高附着力等。
3. 使用简单,可于其它普通填料并用,视情况可等量替代炭黑或白炭黑30%左右,降低生产成本。
4. 具有填充量大、增白效果好等特点。