镉的地球化学、矿物学及含镉矿床
一、镉的地球化学
镉是一种银白色的金属,自20世纪初就开始在工业上得到广泛的应用,是德国Strohmeyer 1817年在研究白色颜料氧化锌中杂质时发现的,几乎与此同时,Hermann也发现用硫酸溶解氧化锌后残留的针状结晶物就是镉。因为它经常包含在氧化锌等矿物中,所以镉的希腊名被取为“卡多曼”(被包含的意思)。镉可以作制成特殊的易熔合金、耐磨合金、焊锡合金等,还广泛用作钢结构的电镀防腐层、原子反应堆控制棒、光电池和制造各种原料等,镉的合金在国防工业上也有重要用途。
(一)镉的地球化学特征
镉是典型的分散元素,至今还没一处真正的独立矿床,主要伴生在其他金属矿床中,尤其是中低温的铅锌矿床。
主要地球化学参数见表4-1,它在地壳中的丰度为0.2×10-6,它位于元素周期表第五周期第二族(锌副族),电子构型为4d105s2,可见在N电子层上除4f轨道以外,已全部被填满,它有偶次的原子序数、偶次的电价、大多数同位素也是偶次的,但它却是一个极为分散的化学元素。镉易失掉2价电子成为2+价离子,它的离子有对称的结构,属于钯型的稳定离子,与Cu、Ag、Au相似,电离势较高,不易氧化。在外电子层中,4f轨道上未被填满的中性原子的特点是具有强的主极化能力,能引起强变形离子——硫、碘产生染色。
表4-1 镉的地球化学参数表
镉是典型的亲铜元素,在自然界中有+1和+2两种价态(刘英俊,1984)。在戈尔德施密特的原子容积曲线上,它位于第四凹陷的上升曲线上,两侧是典型的亲硫元素银和铟。它的特点是自然界稳定同位素多,在质量数为106和116之间有8个稳定同位素(其中6个都是偶次的同位素)。这些同位素的相对丰度见表4-2。
表4-2 镉的稳定同位素相对丰度表
镉和锌一样都属于亲硫元素,两者的离子半径相近[Zn2+(0.83×10-10m)、Cd2+(1.03×10-10m)],且四面体共价半径及构造类型也相似,所以Cd和Zn有着相似的地球化学行为,它的活动紧密地跟随锌,但镉比锌具更强的亲硫性质,在化学性质上镉的碱性程度比锌稍强,同时锌、镉的离子半径不同(镉较锌稍大)。此外,在氧化物及硫化物中两者有显著的差异,CdS与ZnS相同,为闪锌矿型,四面体配位,但CdO为氯化钠型,配位数为6,ZnO则仍是四面体配位,正是由于化学及结晶化学性质上的这些差异,而导致Zn、Cd在地球化学活动历史中有一定分离,当锌与硫化合时,这时锌与镉共生,而与氧化合时则同镉分离。
在大多数情况下,镉是以类质同象状态置换其他相应离子而存在于各种含镉的矿物之中,其中镉主要呈类质同象赋存于闪锌矿、纤锌矿等矿物中,硫化物的闪锌矿积累有最多的资料,其含镉量可以高达 1.85%,但通常多在 0.1%~0.5%之间。一般造岩矿物内镉的含量不高。在弱氧化环境中,含镉的主要矿物(闪锌矿)可被氧化溶解,而镉则仍可以硫化镉(CdS)形式呈薄膜状存在于闪锌矿等硫化物的表面(Cd2++S+2e-=CdS E=0.31伏特)。笔者在贵州都匀牛角塘铅锌矿研究时就发现CdS呈薄膜状附于闪锌矿表面;而在强氧化条件下,镉则可形成CdO或CdCO3 之类的氧化矿物,甚至氧化成CdSO4 而进入水溶液中。此外,镉在热水沉积作用中也具有一定的活动性,如在圣海伦斯火山口附近,镉受火山气体及其升华物质的作用而活化,最后形成固相的硫镉矿(中科院地化所,1997)。在现代洋底扩张中心的热水沉积作用中,含金属沉积物中主要成分之一就是镉(Rona,1988)。这表明在热水沉积作用过程中,镉能够被活化并发生一定程度的富集,实际上,热水沉积作用下镉的富集程度有时会很高,甚至能发生超常富集。
由于镉与锌都是亲硫元素,又是亲石元素,因此镉可同时进入氧化物及硫的化合物中,在硫化物中镉主要进入于锌的硫化物内;在氧化物中镉则存在于钙及锰的矿物内。在地球化学性质上,尤其是在低温热液硫化物成矿的高硫环境,镉表现出强烈的亲硫性,这可以从硫镉矿与方镉矿的吉布斯生成自由能ΔGf看出(林传仙等,1985),硫镉矿的ΔGf值为-145.556kJ/mol,而方镉矿的ΔGf值为-228.532kJ/mol;前者大大高于后者。表明镉的亲硫性比亲石性要强得多,从元素镉在造岩矿物和硫化物中含量的巨大差异(表4-5)及镉在陨石不同组相中的分配特点(表4-3)也可以看出镉的强的亲硫性的特点:明显地趋向于硫化物及陨石的陨硫铁相中。
镉是一个分布相当稀少和十分分散的元素。镉的宇宙丰度,根据修斯和尤瑞的资料为0.89×10-6,与卡梅伦的数据相同;而阿仑斯和泰勒定为0.14×10-6;维诺格拉多夫和高尔斯则分别定为0.11×10-6和0.12×10-6。
太阳大气中被确定的镉含量为0.016×10-6。已知在陨石各相中镉的含量如表4-3。施密特等(1963)研究了七个铁陨石中的镉,其含量从≤0.04×10-6至0.056×10-6,平均为(0.027±0.012)×10-6,四个铁石陨石给出的镉的含量为-6至0.056×10-6。
由不多的数据可以看出,镉明显地富集于陨硫铁相中(表4-3),显示其很强的亲硫性质。同时陨石中镉含量的平均值大于地壳中的平均含量。
表4-3 镉在陨石各相中的分布(wB/10-6)
由于镉在自然界中极为分散,含量很低,因此镉的克拉克值尚不够准确,目前多数研究者给出的镉的克拉克值为0.2×10-6,但伊万诺夫(1964)的资料仍仅0.11×10-6。由地壳经地幔向地核方向,镉的含量是趋向于增高的。
(二)内生作用下镉的地球化学行为
在内生作用下,镉在很大程度上是重复着锌的地球化学历史。在岩浆形成体中,镉与锌一样,其含量是很低的。镉在主要岩浆岩类型中的平均含量见表4-4。
表4-4 主要岩浆中镉的平均含量
由表4-4可知,实际上镉在岩浆作用中没有发生任何明显富集,只是少量的与钙伴生而分散到含钙矿物中。由于镉离子以类质同象方式置换钙,因此它乃存在于岩浆岩的长石、辉石和磷灰石等矿物中。造岩矿物中镉含量如表4-5所示。
现有的分析结果表明,辉长岩类岩石中镉的含量同锌一样,花岗岩类岩石中稍高一些,Zn与Cd含量的比值在岩浆岩中变化幅度大,大致变化于300~1000之间;而且由于镉的离子半径稍大于锌,因此Zn与Cd含量比值(根据同一作者的资料)在酸性岩中照例较基性岩低,它可作为岩浆演化的地球化学指示剂。
许多研究者报道,在花岗伟晶岩中镉发生明显富集,其中锰、铁的铌钽酸盐、钇矿物和钙矿物中均富含镉,含量可达0.001%。在一些含锡伟晶岩的闪锌矿和方铅矿中有时含镉很高,达0.0n%,表现出在硫化物结晶的时候,镉很容易进入到硫化物晶格中。
在岩浆期后的所有高温热液矿床中,除铅锌矿化外,其他(如钨锡)矿床的闪锌矿虽然镉也发生一定程度的富集,但总的来说,镉均未进行显著的集中。
表4-5 镉在一些造岩矿物与矿石矿物中的分布
实际上岩浆中的镉差不多聚集于残余的含硫化物的热水溶液中。在热液亲硫元素结晶时,镉是其中的主要元素之一,它的地球化学行为首先与锌密切相关,并进入所形成的闪锌矿中。因为镉同铅在主要地球化学参数上的差异,所以镉进入方铅矿晶格中的可能性较进入闪锌矿的可能性要低得多。镉的四面体共价半径及构造类型与锌相类似,且含量低微,对类质同象有利,镉难形成自己的独立矿物。
热液成因的闪锌矿是镉的重要工业矿物,在所有研究过的闪锌矿中几乎无例外地都发现有镉的存在(含镉最富的闪锌矿变种称镉闪锌矿)。在闪锌矿中Zn/Cd比值根据戈尔德施密特的资料为300~100,比岩石有显著地降低,说明镉较锌更多地富集于硫化物中。
多金属矿床的闪锌矿是镉的主要集中场所,通常认为镉含量与闪锌矿的形成温度有关。一般是中温或低温条件下形成的闪锌矿中镉含量最高,高温形成的闪锌矿中含镉最低;同时镉的含量与闪锌矿的颜色也相关。笔者研究贵州都匀牛角塘富镉锌矿时,发现该矿床闪锌矿中高度富集镉(平均1.3%,最高>10%)(刘铁庚等,2000),该矿床的成矿温度在100℃左右(Ye Lin et al.,1999),闪锌矿以淡黄棕色为主。
由于闪锌矿中的w(Zn)/w(Cd)比值由高温向低温有逐渐变小的趋势,因此利用镉在闪锌矿中的含量及其与锌的比值,可作为鉴定热液矿床形成时的温度及其物理化学条件的标志。
因为镉与锌相比,具有较低的能量系数和大的离子半径,镉之进入闪锌矿,减低晶格的自由能,所以镉富集于晚期低温闪锌矿中,并较闪锌矿更晚晶出。事实上,致密细晶的近似胶体结构的闪锌矿变种,镉含量显著超过粗晶的闪锌矿变种。不仅在晚期形成的闪锌矿中比较富含镉,同样晚期的纤锌矿也明显镉含量较高。
在热液作用中,镉除与锌有着紧密的联系外,也存在于铅、铜等某些矿物中。诺达克曾指出,除方铅矿外,在热液成因的硒化铅和蹄化铅中也各含300×10-6与10×10-6的镉,其他像黄铜矿、硫砷铜矿、黝铜矿以及锗石之类的热液四面体硫化物与含硫盐中均含有镉。一般说来,镉较锌更倾向进入于含硫盐的矿物晶格之中,这一方面可能是由于含硫盐多形成于热液的较低温阶段,这时在溶液中镉比锌相对地富集;另一方面因在含硫盐形成时,如等酸根离子需要较碱性的离子,故在这方面镉比锌碱性程度更强一些。
不同类型矿床中镉的分布是不同的,但没有十分明显的规律,造成这种分布差异,可能与成矿物质来源、区域地球化学特征以及成矿作用的具体条件等因素均起着制约作用。
(三)表生作用下镉的地球化学行为
在表生作用下,镉同锌仍有着近似的地球化学性质,但镉表现更稳定些,氧化较慢,而且更不易活动,较快地进行沉淀。通过模拟实验证明(叶霖,2000),在表生风化淋滤实验早期,矿石和围岩中锌比较活泼,优先析出,而镉只在中晚阶段才析出,且酸性条件和流动体系有利于镉的析出。
在弱氧化条件下,含镉的主要矿物——闪锌矿可以被很快溶解,而镉则还可以作为硫化物(CdS)残留下来或形成次生的CdS,呈薄膜状存在于闪锌矿等硫化物表面。在强烈氧化条件下,镉则形成如CdO与CdCO3之类的氧化矿物,并氧化成CdSO4而进入水溶液中。CdSO4与ZnSO4有相同的溶解度,由于镉具有较大的离子半径和较低的能量系数,可在水溶液中进行长距搬运。只有在强碱性环境(pH>10)时,才开始发生沉淀。
但镉的迁移可能性仍极有限,因为镉具有较强的主极化能力,所以能被土壤的胶体溶液强烈吸附,与粘土矿物细粒呈悬浮物的形式迁移至海洋中。所以镉在粘土质沉积岩中的平均含量要较岩浆岩中的平均含量大得多,另一方面也较砂岩和碳酸盐质岩石大。镉在主要类型沉积岩中平均含量如表(表4-6)。
表4-6 主要类型沉积岩中Cd的含量(wB/10-6)
同锌一样,镉的沉淀主要是通过碳酸盐的形式。在表生条件下,因为碳酸的作用,镉可以形成菱镉矿(CdCO3),它比ZnCO3的溶解度低,所以镉的碳酸盐较锌的碳酸盐先沉淀下来。因CdCO3与ZnCO3、FeCO3、MnCO3有类似的化学和结晶化学性质,形成条件也基本相同,故在氧化带中它们常紧密共生。
(四)镉的研究概况
西欧和前苏联在18世纪中期便已开始研究镉等分散元素,到20世纪中期对镉等分散元素的研究掀起了一个高潮,Grainger P.E.(1963)、Gong Herry(1977)、Mullin,J.B.(1954)、Schmitt R.A.(1963)等分别研究了沉积岩、海水、陨石等地质体或矿物中镉的分布特征。我国在这一时期也开始重视镉等分散元素的研究,并对其资源分布状况作了摸底调查,这对以后的开发利用和研究奠定了基础。
目前国内外对镉的研究多侧重于水体(江、河、湖泊、工业废水)及沉积物和土壤中镉的迁移富集和所造成的环境污染,这类论文在有关环境的刊物上随处可见。在常温常压下,镉主要呈可迁移和交换的离子态,如Cd(OH)2和CdCO3等形式存在,因此常温常压下镉具有一定的活动性,很容易进入各种环境中的宿体并对其造成污染,进而危害人类健康(Gandchau,1996;Wilknis,1998)。关于镉的富集成矿机制的研究一直十分薄弱,发表的论文仅涉及镉的一般地球化学,如镉的独立矿物、赋存状态等(Carig,1984;张丽彦,1986)。倪世界(1989)研究了湖北铅锌矿石中镉的赋存状态;Ya suhiro Shibue(1988)对日本主要锡矿床中高镉闪锌矿进行了研究;H.Celebi(1990)认为在富镉的Fe-Mn氧化矿床中,由于镉主要分布在闪锌矿中,所以镉的分布与Zn、Pb相关,与Fe、Mn无关;S.Aizawa等(1992)对日本中部三叠纪—二叠纪灰岩中镉的存在形式进行了探讨;F.Vtlu等(1995)认为镉可以集中在黄铜矿、黄铁矿和磁铁矿中,且镉与w(Cd)/w(Sb)、w(Tb)/w(Sb)和w(Zn)/w(Cd)正相关;谷团等初步探讨了我国镉矿资源概况分布,Ye L.(1999)研究了贵州都匀牛角塘富镉锌矿中闪锌矿的微量元素组成,指出该矿床中闪锌矿高度富集镉。
一些地质工作者提出了分散元素镉的异常具有一定的地球化学指示作用,马东升(1989)认为w(Zn)/w(Cd)可以作为华南花岗岩潜在含矿性的标志;Zhangqian(1987)提出w(Zn)/w(Cd)作为判断铅锌矿类型的标志;朱细刨(1993)对西藏洞嘎金矿的研究表明,矿区内土壤中镉异常与金矿化具有一定的内在联系,次生晕镉异常可作为金矿普查的有效指示剂。朱平(1994)提出在绍兴—诸暨一带的石英闪长岩型金矿中,镉是与金关系最密切的元素之一,是金的第一指示元素。刘金钟(1992)认为桂西北一带产于中三叠统板纳组中的微细浸染型金矿中,镉亦能起到示踪金的指示作用。因此,镉可以作为寻找某些矿种的有效指示元素甚至是找矿标志,其主要原因是镉与这些金属元素(如锌和金等)在成矿演化过程中,地球化学行为既有共性又有特殊性。
二、独立镉矿物
在镉的矿物学研究方面,Osadchii,E.G.(1986),Liu J.L.(1993)等进行了高温高压条件下镉的矿物相学实验研究,先后合成了镉的二元系和三元系硫化物系列,这些相系包括:ZnS-CdS、ZnS-FeS-CdS、FeS-CdS、Cu2SnS3-ZnS-CdS、Tl-Cd-S、CaCO3-CdCO3和CdCO3-MgCO3等,并发现了一些在自然界尚未发现的新相,如Tl9CdS10和Tl42Cd3S55,根据这些新相将有助于在自然界发现新的镉矿物。对镉的类质同象置换所形成的含镉的变种矿物的研究(David,1985;贾殿武,1988;Szymanski,1978),如镉银黝铜矿、镉黝铜矿、含锰镉黝铜矿、镉黑辰砂和锌硫镉矿等。由于镉具有较低的能量系数和较大的离子半径,进入闪锌矿后,可以降低晶格自由能,所以镉趋向于在晚期低温闪锌矿中发生富集,并比闪锌矿更晚晶出,这就造成了闪锌矿的w(Zn)/w(Cd)比值由高温向低温有减小的趋势,这个趋势可作为鉴定有关矿床形成温度及其他物理化学条件的判定标志。童潜明(1986)、Ishra(1991)、Bortnikov(1995)等对镉在硫化物之间的分配及其所蕴涵的地球化学意义进行了研究,建立了镉的分配系数温压计,但这类温压计只适用于中高温硫化物矿床。此外,美国和俄罗斯进行了人工合成的镉的矿物学研究(Loasch,1994;Weiedemeier,1995;Avduyevsky,1995),合成的矿物有CdTe和Hg1-xCdxTe等,用于航天技术中空间材料气相生长研究。
由于镉在地壳中较稀少,常呈类质同象形式存在于与其地球化学性质相近的Zn、Cu和Sn等的硫化物中,因此,镉形成独立矿物的条件相对要苛刻得多,到目前为止,在自然界发现的镉矿物种类不多(表4-7),且较稀少,不易形成工业富集,一般只具有矿物学上意义。镉的独立矿物中既有单质,又有氧化物、碳酸盐和硒化物,其中硫化物和硫盐种类最多,说明镉既具有一定的亲石性,又具有很强的亲硫性,且亲硫性要大大强于亲氧性。镉的一些独立矿物属于其他矿物(如黝铜矿和辰砂等)的变种矿物,主要是由于镉对这些矿物中的某些金属阳离子(如,Zn、Ag、Sb、Fe、Hg等)进行类质同象置换形成的,反映了镉与这些元素具有近似的地球化学性质和地球化学行为。此外,大部分镉矿物多产于硫化物矿床表生氧化带,说明镉在表生条件下独特的地球化学行为:在主成矿阶段主要表现为亲硫性,形成其他矿物的变种矿物,而在表生氧化阶段则以亲石性为主,形成镉的典型氧化带矿物(如CdO、CdCO3和CdS等)。笔者在都匀牛角塘富镉锌矿中发现许多氧化闪锌矿矿石表面分布有一些橙黄色土状或被膜状镉的菱镉矿和硫镉矿,而矿床氧化带的菱锌矿中包裹着硫镉矿、镉的氧化物和菱镉矿,这可能是因为闪锌矿氧化分解出来的Cd可形成CdSO4,并交代闪锌矿形成硫镉矿,或镉的氧化物在CO2的作用下可生成菱镉矿所致。
分散元素地球化学及成矿机制
80年代末至90年代初,我国西南地区相继发现了碲、铊、锗等分散元素的独立矿床或矿体(胡瑞忠,1997;骆耀南,1994;张忠,1994),这是矿产地质和成矿理论的一大突破,分散元素可能在我国西南地区有着独特的地球化学行为。在研究贵州都匀牛角塘铅锌矿时(Ye L.,1999),发现其中镉含量异常高(Zn储量为中—大型,镉储量大于5000t,达大型以上),闪锌矿矿石中镉平均含量为9000×10-6左右,而闪锌矿单矿物中镉含量一般大于1.20×10-2,最高可达10×10-2;此外,广东蕉岭鸡公山铅锌矿中矿石含镉在0.1~10×10-2之间,广西临桂葛家塘铅锌矿中镉平均含量为0.63×10-2,最高可达2.62×10-2。可见,镉等分散元素并不“分散”,在特定的条件下会富集,甚至形成独立矿床或矿体(涂光炽,1994)。
三、镉的分布及赋存特征
因镉在地壳中的低含量和其高度分散性,故不易形成独立矿物,特别是在地质作用的早期相中,它不能形成独立矿物,只是在晚期的热液阶段,镉开始可产生某些富集。目前仅发现12种镉的独立矿物(表4-7)。
镉主要呈类质同象赋存于闪锌矿中,其含量一般在n×10-3以上;其次为方铅矿,一般含量为n×10-4,比闪锌矿低1至2个数量级;此外,在部分黝铜矿、块硫锑铅矿和车轮矿、氧化带中的菱锌矿、羟锌矿(含Zn的蒙脱石)氧化锰及褐铁矿中也含有少量的镉。
表4-7 镉的独立矿物表
镉也可以呈单矿物形式存在于铅锌矿床中,有的以硫镉矿呈固熔体形式分布在闪锌矿中(如吉林籍安郭家岭铅锌矿)或与菱锌矿、纤锌矿共生。笔者利用《中国层控矿床》铅锌矿的数据进行相关分析统计,结果表明,Cd与Zn和Pb正相关,其相关系数分别为0.95和0.61,Cd与Fe的相关性极差,表明Cd与Zn的相关最密切。
对中国铅锌矿中闪锌矿成分进行统计,结果表明,一般高温深色(黑色)闪锌矿含Cd最低(1100×10-6~4000×10-6),含Fe相对最高;中温红褐色—棕色闪锌矿Cd含量中等(1600×10-6~6000×10-6),Fe含量相对中等;低温浅色闪锌矿Cd含量最高(1700×10-6~8800×10-6),Fe含量最低。在都匀牛角塘铅锌矿中采集的闪锌矿样品,以淡黄色为主,其中Cd含量一般都在1.20%以上,最高可达1.97%,该矿床成矿温度在100℃左右(Ye L,1999;叶霖,2000)。因此,富Cd的闪锌矿一般颜色较浅,形成温度较低。但并非所有铅锌矿床均如此,如赣南钨矿区,气成热液矿床中的黑色闪锌矿除含铁较高外,往往其中的Cd也较高,一般大于1.00×10-2,这可能与该区为富镉的地球化学区有关。
此外,不同类型铅锌矿的闪锌矿中镉含量不同(表4-8),其中碳酸盐岩型层控矿床中闪锌矿的Cd含量变化较大,一些矿床的闪锌矿中镉含量很高(如牛角塘锌矿),而岩浆热液型铅锌矿中闪锌矿的Cd平均含量相对较高;火山热液型多金属矿床、次火山热液型多金属矿床和同生沉积型铅锌矿的闪锌矿中镉含量较低且变化范围较小。
表4-8 不同类型铅锌矿的闪锌矿中镉含量对比
四、含镉矿床
由前面的论述可知,镉在地壳中的分布极为分散。到目前为止,世界上尚无一例独立镉矿床的报道。真正有工业意义的镉的重要来源仅限于硫化物矿床。由于镉的地球化学性质与锌十分相似(刘英俊,1984),因而,在成矿作用过程中,镉常以类质同象形式进入闪锌矿晶格并随之发生富集,根据美国矿业局估计,世界锌资源中伴生镉资源总计600万吨,锌储量中伴生镉约53.5万吨,储量基础约为97万吨。我国镉资源也十分丰富,全国已发现镉资源产地百余处,保有储量近38万吨(谷团,1998)。由于镉具有显著的亲硫性,也常常伴生于铜锡银铁等的金属硫化物矿床中,我国铅锌矿伴生镉储量相对较多,约占总储量的90%,其次为铜矿,约占4.2%,其余为多金属矿床和铁矿床。从图4-1可以看出,我国镉储量更多集中于云南、四川、广西、广东、江西、湖南和福建等地区。其中滇东北18个铅锌矿床中伴生镉的储量就达9万多吨,约占全国总储量的五分之一,镉资源的集中分布有利于镉的开发。图中只标明了中型、大型和超大型伴生镉矿床。
谷团(1999)按照含镉矿床的元素组合(考虑到镉的高度分散性,以镉为主,兼顾其他成矿元素)把含镉矿床分为以下几类:
(1)Pb-Zn-Cd-S:(铅锌矿型)以兰坪金顶超大型铅锌矿为代表。澳大利亚Lady Loretta铅锌矿也属于这种类型。
(2)Sn-W-Cd-Zn-S:(锡石硫化物型)以都龙、大厂为代表。漂塘、箭猪坡及日本Kaneuchi钨矿和Fujigatemi钨矿均属于此类。
(3)Ag-Cd-Pb-Zn-S:(独立银矿型)以四平三门银矿和破山独立银矿为例。
(4)Fe-Cd-S:(硫铁矿型)以广东阳春黑石岗硫铁矿为例。
(5)Cu-Cd-S:(铜多金属组合型)以湖南七宝山和瑞典Tunaberg铜矿为代表。
图4-1 中国伴生镉矿床分布图
缓凝剂品种大致有以下几种:一是含有羟基的有机物,如一元醇及多元醇,一元醇有甲醇、乙醇、丙醇等,它们的特点是缓凝时间不长且对延缓坍落度损失几乎没有作用,掺量一般为0.1~0.5%。多元醇的缓凝作用较一元醇强的多,如乙二醇、丙二醇、甘油等,在相同掺量下比一元醇凝结时间延长2~8小时;二是水溶性的聚乙烯醇,它兼有增稠和缓凝的作用,但作为缓凝剂使用时,掺量以0.3%以内为宜;三是多元醇衍生物--糖类,运用较多的是5~8个碳原子的单糖,如葡萄糖、蔗糖、麦芽糖等,掺量多在0.06%以下,缓凝效果较好,且对抑制坍落度损失有较明显的作用。而多糖如改性淀粉、糊精的使用对于抑制硅酸三钙的水化效果更好,由于具有一定的黏性,掺量过大时亦会造成拌合物塌落度短时间内减小;四是含有羧酸(盐)基的有机物,如柠檬酸、苹果酸、酒石酸、水杨酸等,掺量范围为0.01~0.1%,有明显的缓凝作用以抑制塌落度损失,对于混凝土、砂浆7天强度有影响,后期强度有一定提高;五是羟基羧酸盐和氨基羧酸盐有机物,其中羟基羧酸盐是采用最多的缓凝调节剂,如葡萄糖酸钠,一般掺量0.02~0.15%之间,它对于3天龄期以内的水泥水化有强烈抑制作用,固其掺量大多限制在0.1%以内,且其具有二次塑化效应,可以减水一定的减水剂,和其它磷酸盐、硼酸盐等有良好的协同作用,可进一步提高调凝效果。还有脂肪族羟基羧酸盐如柠檬酸钠(柠檬酸三钠),酒石酸钾钠,掺量大多控制在0.05%以内,因为他们在高浓度时会起促凝作用。氨基羧酸盐如敌绣钠等;六是有机胺及衍生物,有机胺作为缓凝剂主要是链状脂肪族胺,有机胺中的憎水基团是烷基,亲水基团是胺基,在水泥颗粒表面成膜而阻止其水化。如十六胺、α---十八胺、三乙醇胺、二乙醇胺等,三乙醇胺单独使用时有一定的缓凝作用,尤其与木钙复合使用时能显著延长水泥凝结时间,但三乙醇胺与氯盐或硫酸钠复合使用则早强效果明显。缓凝作用一级胺大于二级胺大于三级胺,而四级胺则有促凝作用。酰胺类化合物多做增稠剂和絮凝剂,但微量的酰胺衍生物和聚合物都有延缓混凝土塌落度损失、保持坍落度流动性和防离析、泌水的功效;七是磷酸盐及膦酸盐,如焦磷酸钠、六偏磷酸钠、三聚磷酸钠、亚甲基膦酸、同碳二膦酸等,其中三聚磷酸钠在水中溶解度最初可达35%,而几日后溶解度反而不到10~20%,有白色沉淀产生。特别是在聚羧酸盐中,溶解度更小,且基本不受温度升高而加大溶解性。一般掺量为0.02~0.2%,28天强度及抗渗等级都有所提高;八是硼酸和硼酸盐,有硼酸、硼砂等,其中硼砂多用于硫铝酸盐水泥中。九是锌盐,如氯化锌、硫酸锌、碳酸锌、硝酸锌等,锌盐缓凝剂单独使用时作用不够持久,多与有机缓凝剂复合使用,且它可以降低混凝土的泌水及不影响早期强度。十是其它,如硫酸亚铁、氟硅酸钠、碳酸亚铁、纤维素醚、硫酸镉等,它们也很少单独使用,且效果也不及有机的理想。
硫化物颜色有:黄、红、酒红、蓝黑、黑、灰黑、棕黑、淡黄、橙红、绿、红棕、灰蓝。
无机化学中,硫化物(sulfide)指电正性较强的金属或非金属与硫形成的一类化合物。大多数金属硫化物都可看作氢硫酸的盐。由于氢硫酸是二元弱酸,因此硫化物可分为酸式盐(HS,氢硫化物)、正盐(S)和多硫化物(Sn)三类。
碱金属硫化物和硫化铵易溶于水,由于水解其溶液显碱性。碱土金属、钪、钇和镧系元素的硫化物较为难溶。当阳离子的外层电子构型为18电子和18+2电子时,往往由于较强的极化作用而形成难溶的、有颜色的硫化物。
扩展资料:二硫化钼是有机合成中的催化剂。由于含硫有机化合物(如噻吩)会使普通氢化催化剂中毒,因此二硫化钼可用于催化含硫有机物质的加氢反应。 硫化镉可用于制作光电池。
硫化铅被用于制作红外感应器。 多硫化钙、多硫化钡和多硫化铵是杀菌剂和杀虫剂。 二硫化碳在工业上被用作溶剂。此外,二硫化碳也被用来制取四氯化碳,有机化学中则用二硫化碳来插入-C(=S)-S-基团。
硫化锌和硫化镉被用来制造荧光粉,高纯度的硫化镉是良好的半导体。 三硫化四磷用于制火柴和烟火。 十硫化四磷用于制杀虫剂、润滑油添加剂和浮选剂。
参考资料:百度百科----硫化物
已形成的岩石(包括矿石)进入地球表层后,由于环境的物理化学条件发生了变化,为了要与新的环境取得平衡,原有的物质存在形式(包括元素含量和组合、元素的结合方式等)将发生深刻的变化。
表生环境是一个在太阳能和重力能作用下的多组分动力学体系,表生环境温度不高但变化迅速,压力为常压且变化小;有广大的自由空间且富含氧气及二氧化碳;水可以以气、液、固三种相态参加作用;生物活动和作用异常强烈,尤其近现代有人类活动参与;表生化学过程多为放热反应。表生有机作用使大分子量及分子量不定的物质大量产生,元素间过渡型的结合形式亦大量出现。
当外部静压力降低后,岩石首先遭受物理改造,当环境中的水、水中溶解的阴离子和CO2、O2等与岩石发生作用时,岩石开始发生化学变化,使岩石和矿物的组分、结构彻底被改造。生物参与物理、化学作用会加剧对岩石的分解。
硅酸盐矿物经历化学作用和生物化学作用后,形成一系列次生矿物,主要有粘土矿物类及铁、锰、铝的含水氧化物。经化学风化后,一部分元素进入次生矿物,另一部分物质成为可溶物,如碱金属和碱土金属K、Na、Ca、Mg等以阳离子形式,以及等以阴离子形式溶于水中。一般来说,K+、Mg2+可以被粘土强烈吸附,Ca2+、Na+更容易呈离子态溶于水中被迁移。
碳酸盐类岩石遭受强烈的化学作用时,在含CO2的水的作用下,Ca、Mg被大量溶解,但其他重金属元素几乎全部被残留下来而富集。
经水-岩作用后的超基性岩以富含 Cr、Co 为特征,Ni 含量也较其他岩石高。在潮湿地区,中酸性岩石中的大部分元素被雨水带走,残余组分形成硅铝质风化壳。在干旱地区由于形成钙积层或钙质风化壳,使环境呈碱性,可构成碱性障。
铁帽是表生水-岩作用的特殊产物,由含铁硫化物、氧化物风化后形成的铁的含水氧化物呈土状或结核状物质组成,许多著名矿床都是通过铁帽被发现的。
表生带中元素的活动性与 pH-E h 条件有联系。如铜和钼在氧化、酸性的介质中两者都具有中等或高的活动性,但在中性和碱性条件下钼、铜的活动性差异很大。因此,在斑岩铜矿中铜和钼常伴生,但在表生作用带钼形成钼酸根络阴离子进入水中稳定迁移,而铜则生成碱式碳酸盐在原地沉淀。又如,在内生条件下Pb和Zn经常相伴,但在表生条件下,Pb的氧化产物PbSO4的溶解度很小,极易沉淀,而 Zn 的氧化产物 ZnSO4的溶解度很大,易进入水中迁移。Ni、Co也有类似的情况,在内生作用过程中两者密切伴生,在表生氧化条件下,NiSO4在水中稳定迁移,而 Co 则被氧化形成 Co3+后很快被 Fe(OH)3吸附,表现为 Co的富集。
影响风化作用的因素主要有:
(1)母岩的化学成分和矿物的耐风化能力。矿物在风化过程中的稳定性大小的顺序一般为:氧化物>硅酸盐>碳酸盐和硫化物,而且矿物成分越单一的岩石越难被风化。存在于矿物中的类质同象混人物,常可能对风化过程起催化作用,使矿物加快氧化和溶解。例如,富含Fe、Mn、Cd的闪锌矿,其风化速率要比几乎不含类质同象混人物的闪锌矿大得多。矿物在风化过程中的相对稳定性还取决于矿物的颗粒大小、矿物集合体结构和可渗透性等。
(2)环境条件。除水以外,影响表生作用的主要物理化学因素有温度、大气中的氧和二氧化碳、水介质的酸碱度,以及环境的氧化还原条件等。
3.4.1.1 风化壳的分带及硅、铝和铁的分异演化
3.4.1.1.1 风化壳的形成和风化壳发育的阶段性
暴露在地表的岩石经风化后,不稳定的矿物发生分解,可溶性物质随水流失,剩下的物质残留原地,与经生物风化形成的土壤在陆地上形成不连续的薄壳,称为风化壳。风化壳中典型的化学反应主要有溶解反应和氧化还原反应(表3.12)。风化壳中元素的迁移包括淋滤和聚积两个方面。不同元素被淋滤的速度波动范围很大,如Cl和S较Al、Fe、Ti带出的速度快近千倍,使风化壳中相应聚积了Al、Fe、Ti等活动性小的元素。
风化过程中矿物风化的阶段性表现得非常突出,一种原生矿物经风化向最终产物的转化通常都不是直接完成的。如硅酸盐风化转变的一般过程是:钾长石→绢云母→水云母→高岭石;辉石→角闪石→绿泥石→水绿泥石→蒙脱石→多水高岭石→高岭石;黑云母→蛭石→蒙脱石→高岭石。
风化壳具有分带性,最下面是新鲜的原岩(母岩),向上过渡到半分解的岩石,再向上到近地表为完全被分解的部分。Ginsburg(1947)将风化剖面由下而上划分为三个带:①半分解带和部分淋滤的基岩,被淋滤的物质是基性硅酸盐,带内含有大量原生的残留矿物,也有水化的置换物(云母、绿泥石、水云母、水绿泥石),并且还积累有渗透下来的物质,本带的pH值一般是8.5~9或更高;②未完全风化带或硅铝岩(粘土矿物)带,含有在弱碱性、中性和弱酸性条件下生成的蒙脱石族和高岭石族矿物,该带的pH值波动在5~8.5;③风化残余带,通常在该带中的化合物有三氧化二铝、三氧化二铁、氧化锰等,介质已明显呈酸性,pH值<5。
表3.12 典型的化学风化反应举例
3.4.1.1.2 红土化过程中硅、铝和铁的化学演化
红土或砖红壤成因机制的核心是热带土壤中粘土矿物的稳定性问题。热带土壤可分为两类:一类是以粘土矿物为主的土壤;另一类是铁质红土和铝质红土,其中粘土矿物含量较少。在铁质红土中含有赤铁矿、针铁矿、三水铝矿、勃姆矿等,很少见到一水硬铝石。如果红土化作用的最终产物是硅铝分离造成的无硅的三氧化二铝和无铝的二氧化硅的话,热带地区就不应该存在大量的硅铝未分离的粘土矿物。但实际上并非如此,热带的“半年雨季,半年旱季”的干湿交替的气候特点,可能是红土化作用发生的主要原因。在温度高、湿度大的雨季,二氧化硅等将被淋滤出去。在旱季地下水面明显下降,水溶液沿毛细管上升,将下部的三氧化二铁和三氧化二铝带到地表,在干旱条件下水被蒸发而沉淀出富铁红土和富铝红土。由于引起岩石风化的水溶液是近中性的(pH值为6~8),又较少含硫酸铁等氧化剂,因此,硅的胶体运移、微生物和植物参与热带风化作用等在红土化过程中有重要意义。
试验表明,在酸性或碱性溶液中均可将硅酸盐矿物(包括粘土矿物)中的二氧化硅分解出来。根据Okamoto等人的研究结果(图3.11),当温度为0 ℃,
水的pH值介于5.5~8时,非晶质二氧化硅的溶解度是100 mol/L左右;当温度提高为22 ℃,pH为6.5~7.5时,溶解度约为200 mol/L;当pH为9.5时,其溶解度分别为200 mol/L(0 ℃)和300 mol/L(22 ℃)。图3.12是铁、铝、硅三种氧化物在不同pH值的水溶液中的溶解度。氧化铁只在pH<3的酸性溶液中溶解,实际上不可能从风化带中转移出去;三氧化二铝在弱酸性和弱碱性溶液中溶解,而在风化带中水溶液的pH值介于4~9时,也不能迁移。因此,硅与铁、铝两种元素在深度风化条件下应该发生分离。
以下是几个矿床的分带。从委内瑞拉圣伊西德罗风化淋滤型铁矿床的氧化分带,可以看出铁矿石在氧化条件下的进一步富集过程,氧化带自下而上的分带是:①未风化的含铁层带,地下水是停滞的,pH>7,岩石无明显变化;②含铁层的氧化淋滤带,地下水有移动现象,pH值为 7 或稍低;③假象赤铁矿化带,地下水不起主要作用,其 pH值 <7;④水化作用带,常形成氢氧化铁的硬壳,水中含有机化合物,pH值在6左右。
图3.11 非晶质二氧化硅的溶解度
图3.12 铁、铝和硅氧化物的溶解度与pH的关系
巴西米纳斯吉拉斯州铁四边形地区风化淋滤型富铁矿床自上而下也有类似的分带。其中的条带状铁硅建造(BIF)在经历了红土化过程的氧化后,铁矿石的品位提高了1.6~1.8倍。我国鞍山弓长岭铁矿也有上亿吨的富铁矿石,但是因为缺乏表生氧化富集作用,使得富铁矿石的比例大大降低。
海南蓬莱和福建漳浦—龙海的风化剖面是铁质富铝玄武岩形成富铝风化壳的例子,风化壳自下而上分为(李文达等,1995):①弱风化玄武岩层,pH值为6.7~7.5;②含结核粘土层,该层主要矿物为高岭石、水针铁矿和石英碎屑等,含有机质0.3%~0.7%,粘土的pH值为5.4~6;③结核状粘土质铝土矿层,主要矿物是三水铝石、针铁矿、高岭石等,粘土矿物的pH值为4.7~5.6;④红土层,主要由高岭石、水针铁矿和(或)铝土矿豆石等组成,pH值为5~5.4。
以上两种红土型风化剖面有着很好的对比度。只是由于原岩的物质组成上存在差异,最后两者分别演化成了富铝风化壳和富铁风化壳。
上述风化剖面的共性是水溶液自下向上酸度递增,硅的溶解度递增,氧化作用的强度递增。这种分带也反映了风化作用的不同阶段,实际上硅酸盐矿物的分解是经历了一系列粘土矿物的演变才过渡到铝土矿物的,常温下钾长石—云母—高岭石—三水铝矿间的平衡反应如下:
地球化学
并非所有的风化壳都是现代风化作用的产物。如福建连城在上侏罗统中酸性火山岩下面赋存氧化锰富矿体,这种氧化锰矿体原来是下二叠统栖霞组的含锰岩层,后来在遭受了强烈的风化作用后,在中生代形成了古风化壳(陈华才,1989)。
3.4.1.2 硫化物矿床的表生氧化作用
硫化物矿床是地壳中分布极其广泛的金属矿床,几乎全部有色金属和贵金属及部分黑色金属都赋存在这类矿床中。自20世纪50年代以来,许多矿床学家都将注意力集中到现代成矿作用和成矿模拟试验研究方面,提出了很多重要的成矿模型。
研究得比较清楚的硫化物矿床氧化带,是以黄铁矿和黄铜矿为主的铜矿床,尤其是对细脉浸染型斑岩铜矿床次生富集规律的研究。后来又扩展到对铅、锌、金、银、钴、镍等硫化物矿床氧化带的研究,并应用化学热力学和动力学的基本原理,来分析和探讨表生成矿过程。
3.4.1.2.1 硫化物矿床氧化带的分带性
硫化物矿床氧化带主要是新第三纪以来的产物。硫化物矿床氧化带的形成经历了长期的氧化还原作用过程,应该将氧化带及其下面的原生硫化物矿床作为一个统一的系统来进行研究。
氧化带由上到下的垂向变化,实际上是一个氧化还原反应的进程。随着向深处延伸,氧化作用逐渐变弱以至消失,还原作用逐步加强,导致氧化带在不同深处出现了各具特色的矿物组合,造成氧化带还可以细分出一些亚带。北美学派(Emmons,1981)和俄罗斯学派(Smirnov,1965)的两种分带模式(图3.13)都是以地下水面为界,其上为氧化亚带,其下靠近水面处为氧化—还原亚带,再往下就是原生硫化矿石带。从水—岩作用的动力学条件分析,在潜水面以上是大气降水和地表水向下渗滤,水中富含溶解氧和二氧化碳,水溶液具有很大的氧化活力和很强的溶解力,大气也可能直接渗透进这一地带,造成一个强氧化亚带。在地下水面以下为水—岩交换作用区域,潜水缓慢地侧向运动,水中溶解氧含量下降,大气已被隔离,水溶液的氧化能力急剧降低,处于氧化和还原作用相持的局面,这有利于次生硫化物富集亚带的出现。图3.13是硫化物矿床氧化带的理论分带。
图3.13 硫化物矿床氧化带分带示意图
陈建平等(1998)提出:西藏玉龙铜矿床经历了多次氧化成矿作用,形成了复杂的表生氧化作用分带。该矿床氧化带有以下分带:次生氧化物富集带、次生硫化物富集带和原生硫化物矿石带。按氧化带成矿阶段划分,大致可分为早期垂向氧化成矿作用和晚期侧向迁移叠加富集成矿作用。晚期侧向富集成矿生成的铜矿石品位高、厚度大,是玉龙铜矿最重要的成矿阶段。
3.4.1.2.2 硫化物在氧化带中的氧化方式
硫化物矿床的类型虽然多样,但主要硫化物矿物的种类相似,地表的氧化还原条件也相近。因此,氧化带中硫化物的氧化主要有以下方式:
地球化学
所有的硫化物均可被氧化成可溶的、微溶的或不溶的硫酸盐类。表3.13是在氧化带中一些常见的配体与过渡金属达到平衡时的最大浓度(活度)(Kranskoph,1979),铁与锰在给定的Eh和pH条件下几乎不能进人溶液,因为它们的氧化物和氢氧化物呈高的氧化态而不能溶解。这些组分就被留在露头上形成褐黑色的“铁帽”。
表3.13 一些金属与常见的阴离子平衡时的最大浓度⑦
在还原条件下的酸性溶液中铁和锰既不沉淀也不会被还原成自然金属,而可能被大量带走;银将作为氯化物(角银矿AgCl)沉淀下来,或者还原为自然银;汞在强还原条件下被还原成球状液态的自然汞和汞的不溶化合物(HgCl、HgO和Hg4OC12等);铅和镉生成不溶的碳酸盐矿物(PbCO3、CdCO3)和铅的不溶硫酸盐矿物;锌的碳酸盐溶解度也低;部分铜以碱性碳酸盐矿物的形式残留下来。
3.4.1.2.3 次生硫化物富集亚带的形成
溶于水的硫酸盐类被潜水从氧化带渗透下来,渗透水溶液中的金属与原生硫化物中的金属间可进行置换。这种相互交换严格地按照元素亲硫性减小的顺序进行:Hg—Ag—Cu—Bi—Cd—Pb—Zn—Ni—Co—Fe—Mn。总是排在序列前面的金属元素将排在其后的金属元素从硫化物中置换出来,使之生成硫酸盐,同时原来溶解的金属硫酸盐被还原成硫化物。例如,硫酸铜溶液可以置换黄铁矿,而不能置换辉银矿。由于交换过程在地下较深处进行,温度较高,硫化物氧化反应又是放热过程,半封闭的环境使热量无从散发,温度升高会使反应速率加快,因而作用比较彻底,常形成某些金属硫化物的富集亚带。
次生硫化物的组成比较简单,金属含量高且杂质含量低,铜的次生硫化物富集亚带中就常形成重要的富铜矿石。
地壳的上升剥蚀速度、潜水面的升降是氧化带分带完整性的决定因素。当潜水面急剧下降时会使位于潜水面下的次生硫化物重新遭受氧化作用,这种反复的氧化为次生氧化富集亚带的生成创造了有利条件。
从图3.14中可以清晰地看出常见硫化物在氧化带中的变化及其与水溶液性质的关系。图中对铜、锌、铁三种金属元素在不同环境中的稳定形式和矿物类型、各氧化带的边界以及硫化物的稳定性等作了定量地判定。在图中由 A—B—C用虚线连结的三角形中,点A代表还原环境,是硫化物稳定区;如果硫化物与水溶液氧化反应形成次生硫化物、氧化物和碳酸盐类矿物,则在 B 处稳定;这些次生矿物搬运到还原状态中的C区,由于消耗H2SO4和并形成次生矿物,溶液将趋向中性,即次生硫化物是在近中性的环境中生成的。
图3.14 金属硫化物及其氧化产物的稳定性图解
水中铁的污染来源主要是选矿、冶炼、炼铁、机械加工、工业电镀、酸洗废水等.
铁是人体的必需微量元素之一.其化合物属低毒或微毒.二价铁具有一定的全身毒性作用,三价铁盐毒性较小,对粘膜具有轻度刺激性和腐蚀性.水环境中铁类化合物的浓度为1mg/l时,有明显金属味;浓度为0.5mg/l时,色度可大于30度.饮用水中铁超过0.3mg/l时,会对衣服、器皿着色及产生沉淀和异味.国标要求生活饮用水铁的含量应小于0.3 mg/l.
锰
地下水中由于缺氧,锰以可溶态的二价锰形式存在,而在地表水中还有可溶性三价锰的络合物和四价锰的悬浮物存在.
锰的主要污染源是黑色金属矿山、冶金、化工排放的废水.
锰是人体正常代谢必需的微量元素,一般人每天约从食物中摄入3-9mg锰.但过量的锰进入机体后可引起中毒.锰中毒表现主要为神经衰弱综合症和植物神经功能障碍,继续发展可出现明显的锥体外系损害为主的神经体征.水中有微量锰时,呈黄褐色.锰的氧化物能积沉在水管壁上,遇水压波动时可造成“黑水现象”.当水中锰超过0.15mg/l时,能使衣服和白色瓷器设备着色.国标要求生活饮用水锰的含量应小于0.1 mg/l.
铜
铜以单质或各种矿物形式存在.除了采矿,热交换以及其他工业用途都可以把铜排污入水环境.铜的高浓度溶液广泛地用于除草剂以控制海藻类的繁殖;在农业上也常用其作杀菌剂.
水中含铜0.5mg/l时,具有明显的金属味;超过1.0mg/l时,可使衣服及白瓷器染成绿色.铜是人体必需的微量元素,对于造血、细胞生长、某些酶的活性及内分泌腺功能均有重要作用.当进入人体内的铜化合物超过一定限度时,就要引起疾病.铜在体内主要贮留在肝、脑、肾等组织.铜代谢障碍所引起的疾病称为肝豆状核变性病,是一种遗传性疾病.铜急性中毒时,表现剧烈呕吐、腹泻,有时伴有腹绞痛、便血、剧烈头痛、出冷汗和脉弱,严重中毒可因休克、肝肾损害而致死.国标要求生活饮用水铜的含量应小于1.0 mg/l.
锌
锌的主要污染源是电镀、冶金、颜料及化工等部门排放的废水.
饮用水中含锌50mg/l时,会引起恶心和昏厥.水中含锌10mg/l时呈现浑浊,含锌5mg/l时有金属涩味.锌是人体内必需的微量元素.缺锌时,能使骨骼生长迟缓,肝脾肿大,性腺功能减退.过量的锌可对胃肠道产生强烈刺激.吸收后主要贮留在肝和胰.过量的锌盐经口进入人体可发生急性中毒.国标要求生活饮用水锌的含量应小于1.0 mg/l.
挥发酚(以苯酚计)
根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚.挥发酚多指沸点在230 以下的酚类,通常属一元酚.
酚类主要来自炼油、煤气洗涤、炼焦、造纸、合成氨、木材防腐和化工等废水.
酚属高毒类,为细胞原桨毒物,低浓度能使蛋白质变性,高浓度能使蛋白质沉淀,对各种细胞有直接损害,对皮肤和粘膜有强烈腐蚀作用.长期饮用被酚污染的水,可引起头昏、出疹、搔痒、贫血、恶心、呕吐及各种神经系统症状.酚类化合物对人及哺乳动物有促癌作用.国标要求生活饮用水挥发酚类的含量应小于0.002 mg/l.
硫酸盐
硫酸盐在自然界中分布广泛.地表水和地下水中硫酸盐主要来源于岩石土壤中矿物组分的风化和溶淋,金属硫化物氧化也会使硫酸盐含增大.
水质中硫酸盐超过750mg/l时,饮用后可致轻度腹泻.国标要求生活饮用水硫酸盐的含量应小于250 mg/l.
氯化物
氯化物是水和废水中一种常见的无机阴离子.几乎所有的天然水中都有氯离子存在.同时,在生活污水和工业废水中,均含有相当数量的氯离子.海水入侵地下水,会使氯化物含量明显增高.
氯离子是保持人体细胞内外体液量、渗透压以及水和电解质平衡不可缺少的要素.氯化物含量过高时,可干扰人体电解质平衡,使人体细胞外渗透压增加,导致细胞失水,代谢过程出现故障.国标要求生活饮用水氯化物的含量应小于250 mg/l.
溶解性总固体
水中溶解性固体的主要成分是钙、镁、钠的重碳酸盐、氯化物和硫酸盐.当其浓度高于1200mg/l时,可产生苦咸味.国标要求生活饮用水溶解性总固体的含量应小于1000 mg/l.
氟化物
氟化物广泛存在于自然水体中.有色冶金、钢铁和铝加工、焦炭、玻璃、陶瓷、电子、电镀、化肥、农药厂的废水及含氟矿物的废水中常常都存在氟化物.
氟化物是人体必需的微量元素之一,缺氟易患龋齿,饮水含氟的适宜浓度为0.5~1.0mg/l.当长期饮用含氟量高于1.0~1.5mg/l的水时,易患斑齿病,如水中含氟量高于4 mg/l时,则可导致氟骨病.
氟可与骨组织的羟磷灰石的羟基交换,并通过抑制骨磷酸酶或与体液中的钙离子结合成难溶性氟化钙,从而导致钙、磷代谢紊乱,引起低血钙症、氟斑牙及氟骨症等.国标要求生活饮用水氟化物的含量应小于1.0 mg/l.
氰化物
氰化物的主要污染源是电镀、有机、化工、选矿、炼焦、造气、化肥等工业排放废水.氰化物可能以HCN、CN 和络合氰离子的形式存在于水中.
氰化物使水呈苦杏仁气味,氰化物剧毒.
氰化物的毒性作用是由于氰基离子与细胞色素氧化酶中的铁结合成铁氰络合物,阻止氧化酶的氧化还原作用,防碍组织内呼吸的正常进行.氰化物引起急性中毒时,表现出剧烈头疼,神智模糊甚至昏迷,全身抽搐,大小便失禁,感觉和反射消失,瞳孔散大,呼吸深慢,血压上升或下降,心率缓慢等,常因呼吸停止而死亡.慢性中毒时,可引起神经衰弱、头疼、头晕、耳鸣、失眠、全身无力,心率缓慢和血压降低等.国标要求生活饮用水氰化物的含量应小于0.05 mg/l.
砷
砷是一种既有金属性质又有非金属性质的元素.它的化合物在自然界广泛存在;可以是有机的.大部分是砷盐和砷硫化铁.在天然水中普通的砷化合物是砷酸盐(五价砷),亚砷盐(三价砷),甲烷胂酸及二甲胂酸.
砷的污染主要来源于采矿、冶金、化工、化学制药、农药生产、纺织、玻璃、制革等部门的工业废水.同时,砷及其化合物还是用于农林业上除草剂的成分之一.
砷是人体的非必需元素,元素砷的毒性极低,而砷的化合物均有剧毒,三价砷化合物比其他砷化合物毒性更强,人所共知的毒药“砒霜”即是三氧化二砷(三价砷).砷可以在人体内积累,是致癌物质,人们还怀疑它有致突变作用.
砷化物的毒性作用,主要是亚砷酸离子与人体细胞酶蛋白的巯基结合,使细胞酶失去活性,引起代谢障碍,促使细胞死亡.砷化物对神经细胞的危害最大,它还能通过血液循环,直接损害毛细血管,使其扩张松弛,渗透性增加.
当人体摄入的砷量超过排出量时,砷就会在肝、肾、脾、肺、肌肉、骨骼等部位积蓄起来,尤以指甲和毛发储留最多.毒性强的砷化合物在肝、肾内结合迅速并且牢固,比毒性弱、结合差的砷化物排出慢.
砷化物慢性中毒症状与急性中毒症状相似,只是发展缓慢,表现为食欲不振、腹痛、腹泻和消耗不良、肝肿大、疼痛,有黄疸,个别严重者可发生肝硬化.国标要求生活饮用水砷化物的含量应小于0.05 mg/l.
硒
水中硒以无机的六价、四价、负二价及某些有机硒的形式存在.含硒废水主要来源于炼油、精炼铜、制造硫酸及特种玻璃等行业.
硒是动物体内一种必需的微量元素,但在某种条件下,又具有一定的毒性.硒的毒理作用,一般认为除了二甲基硒的作用外,与硒影响酶系统有关.二甲基硒可引起呼吸系统刺激和炎症.硒可使毛细血管扩张及渗透性增加,引起肺和胃肠道充血、水肿.硒对细胞呼吸酶系统有催化作用,干扰中间代谢能引起中毒,使人脱发、脱指甲、四指发麻甚至偏瘫等.国标要求生活饮用水硒的含量应小于0.01 mg/l.
汞
汞及其化合物属于剧毒物质,可在体内积蓄.进入人体的无机汞离子可转变为毒性更大的有机汞,由食物链进入人体,引起全身中毒.天然水中含汞极少.仪表厂、食盐电解、贵金属冶炼、军工等工业废水中可能存在汞.
汞及其化合物可通过呼吸道、消化道或皮肤被人体吸收.发生在日本的“水俣病”就是甲基汞慢性中毒引起的.甲基汞有较高的化学稳定性,各种加工、烹调方法都不能把它除掉.甲基汞极易被肠道粘膜吸收(80%以上).当摄入量超过排出量时,就会在体内积蓄.甲基汞在脑组织中的蓄积程度虽然不如其他器官,但一旦进入脑组织后,衰减非常缓慢,并对大脑皮质和小脑皮质有特异的选择性损害.症状表现为视野缩小,听力下降,手、脚、嘴唇麻痹发抖,步态不稳,口齿不清,严重者出现神经紊乱,运动失调,进而疯狂痉挛致死.甲基汞还能通过胎盘进入胎儿循环,损害胎儿.国标要求生活饮用水汞的含量应小于0.001 mg/l.
镉
镉不是人体必需的微量元素.在自然界,镉通常以硫酸盐形式出现,并常与锌矿石和铅矿石伴生.在矿区和冶炼厂附近,积累在土壤中的镉可导致临近水域局部地区镉有很高的浓度.镉的主要污染源有电镀、采矿、冶炼、染料、电池和化学工业等排放的废水.
镉是剧毒性物质,且有协同作用,可使进入体内的其他毒物的毒性增大.镉进入人体后,可以在人的肝、肾、胰腺和甲状腺内积累.由于肾小管中毒变性及钙质吸收能力下降,可引起骨、消化道、血管的病变,表现有神经痛,肾炎、骨质松软、骨折、高血压、贫血、内分泌失调等症状.镉还有致癌、致畸、致突变作用.饮水中镉不得超过0.01mg/l.
日本的“痛痛病”是因为体内镉积累过多,引起肾功能失调,骨质中钙被镉取代,使骨骼弱化,极易自然骨折,疼痛难忍而得名.这种病潜伏期长,短则10年,长则30年,发病后很难治疗.国标要求生活饮用水镉的含量应小于0.01 mg/l.
铬(六价)
铬的化合物常见的价态有三价和六价.受水中pH值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化.
铬是人体所必需的微量元素之一.铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价格更易为人体吸收而且在体内积蓄.铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革揉制、印染等行业.
六价铬化合物对人体有害,在高浓度时具有明显的局部刺激作用和腐蚀作用,并能经胃肠道、呼吸道和皮肤吸收;在低浓度时是常见的致敏物质.进入体内的铬主要分布在肝、肾、脾和骨骼内.铬在体内具有一定的积蓄作用和致癌作用.国标要求生活饮用水六价铬的含量应小于0.05 mg/l.
铅
天然水中含铅量很少.选矿厂、涂料厂、冶炼厂、蓄电池厂、矿井的废水中常含有程度不等的铅.汽车排出的废气中含有的四乙基铅,可由雨水淋洗造成水质污染.
儿童、婴儿、胎儿和孕妇对铅较成人敏感.铅是有毒金属.铅可引起溶血,也可使大脑皮质的兴奋和抑制的正常功能紊乱,引起一系列的神经系统症状.铅及其化合物主要从呼吸道、消化道进入机体,主要沉积于骨骼系统,少量存留于肝、脾、肾、脑、肌肉等器官和血液内.国标要求生活饮用水铅的含量应小于0.05 mg/l.
硝酸盐(以氮计)
制革废水、酸洗废水、某些生化处理设施的出水和农田排水可含大量的硝酸盐.
水中硝酸盐是在有氧环境下,各种形态的含氮化合物中最稳定的氮化合物,亦是含氮有机物经无机化作用最终阶段的分解产物.亚硝酸盐可经氧化生成硝酸盐,硝酸盐在无氧环境中,亦可受微生物的作用而还原为亚硝酸盐.
硝酸盐在人胃中还原为亚硝酸盐后,还可以与仲胺作用形成亚硝胺,现在普遍认为这是一种强致癌物质.国标要求饮用水的硝酸盐氮不得超过20mg/l.
1.Sa值、Saf值、ba值、C值、MWPI
在风化作用中,岩石中的石英溶解度很低,在其他硅酸盐矿物被破坏或转变为粘土矿物时仍可保留在风化物的剖面中。长石和云母类矿物表生条件下易转变为粘土矿物。在水、氧和碳酸的作用下,硅酸盐矿物最初分解出来的是SiO2的水溶胶,它有吸附性,常可吸附其他离子,在pH值低时可形成块。
在本区红土剖面中,SiO2含量很高,质量分数在50%~97%间,平均值为72.75%;钻孔沉积物中SiO2质量分数在53%~98%间,平均值为69.87%。表明硅在本区第四系中含量变化很大,同时存在源区的物理和化学风化及沉积区的机械和化学沉积。
铝的地球化学性质较稳定,和氧结合能形成较稳定的矿物。在风化壳和土壤中铝除了原生矿物外,还形成大量的次生粘土矿物,如伊利石、蒙脱石、高岭石和三水铝矿等,是风化壳和土壤的特征元素。铝在一般的水溶液中(pH值为5~9,即弱酸或者弱碱的环境中)很难溶解,产生氢氧化铝沉淀;只有在自然界很难见的强酸或强碱性水环境中才可溶解,所以Al的搬运主要是通过机械作用而不是化学作用。
在岩石风化过程中,比较活泼的K、Na、Ca、Mg等碱金属和碱土金属元素很容易被淋滤出来,而Si、Al等稳定元素则在残余相(风化产物)中富集,被淋滤出来的K和Mg又很容易被风化产生的粘土矿物吸附或结合起来,从而相对富集于风化产物中,Na和Ca则比较容易流失而致使在风化产物中含量较低。
因此,Sa值(SiO2/Al2O3)、Saf值[SiO2/(Al2O3+ Fe2O3)]、ba值[K2O+Na2O+CaO+MgO)/Al2O3]、MWPI值[(Na2O+K2O+CaO+MgO)/(Na2O+K2O+CaO+MgO+SiO2+Al2O3+Fe2O3)]和C值[(Fe+Mn+Cr+Ni+Co+V)/(Ca+Mg+Sr+Ba+Na+K)]在剥蚀区反映的是风化淋溶或红土化作用的强度,大多可直接反映红土化时的气候湿热情况。但在沉积区,湖泊沉积物中的这5个反映活性组分与惰性组分相对含量关系的值,对气候及沉积环境的反映则变为间接和多解。如SiO2/Al2O3(Sa值)大,在剥蚀区反映的是后期干冷气候下的风化淋溶或红土化作用弱;而在沉积区,既可因流域内环境湿热有利于化学风化作用的发生,Si通过化学搬运和沉积的量大,此时Sa值高表示流域内环境湿热;也可因源区干冷气候下的风化淋溶或红土化作用弱,含Al的粘土矿物搬运来得少(石英砂粒相对增多),此时,Sa值高表示流域内环境干冷。本区的孢粉分析结果支持后者。其余4值亦然。
表7-1 洞庭湖沉积区元素对比值的地球化学环境意义分析
续表
*表示每格4个符号分别由2钻孔、3钻孔因子分析、湿热指数相关分析、蒿/藜(蒿/禾)而来;=|代表2个+;=代表2个-;缺乏为不显著。**表示主要由孢粉结果综合,斜体为参考其他资料的有矛盾的解释。
2.Ca/Mg、Ca/Sr、Sr/Ba、Rb/Sr、K/Na、K/Ca、K/Rb、Fe/Mn比值
(1)Ca/Mg比值
钙是在地表疏松层和生物圈中活跃的元素之一。在剥蚀区的湿润环境中钙因为CaCO3+H2O+CO2→Ca(HCO3)2而随水迁移;在干燥环境由于缺水,使CaCO3难于溶解风化,即使形成部分Ca(HCO3)2也由于水分蒸发强烈,Ca(HCO3)2脱水作用,形成次生CaCO3而淀积,或形成Ca2+与 结合为CaSO4而富集。镁的地球化学性质与钙元素相似,但淋滤出来的Mg又很容易被风化产生的粘土矿物吸附或结合起来。对Ca2+与Mg2+来说,由于Ca2+离子半径较大,故其迁移能力也相对较大,因此富集 Ca2+的环境比富集 Mg2+的环境相对更干,故剥蚀区 CaO/MgO(或Ca/Mg)比值大反映古气候环境较干冷。
在封闭湖泊中,富Mg的自生碳酸盐矿物的出现,即Ca/Mg比值的降低,暗示了气候干旱程度的增加;而Ca/Mg比值的增加,表示由方解石、文石组成的自生碳酸盐沉积,即CaCO3含量的增加,反映了较为湿热的环境。另在较高温的开放、半开放淡水湖泊中,水体中生物的光合作用加强,消耗的CO2增多,反应Ca2++ →CaCO3+CO2的化学平衡向右移动,导致CaCO3的形成,Ca/Mg比值升高。即两种Ca/Mg比值升高的情形均反映了较为湿热的环境,正与剥蚀区的古气候环境意义相反。
但对于仅仅由外源物质注入、Ca和Mg一般非内生沉淀的湖泊来讲,Ca/Mg比值反映的是源区的气候环境意义,即Ca/Mg比值大反映干冷气候环境。
然而外源碎屑带入湖泊的方解石、文石与内生的成分是难以区分的。本区钻孔沉积物的Ca/Mg比值与湿热孢粉正相关,以及与Ca/Sr、Sr/Ba的同步消长,说明洞庭湖的方解石、文石多有内生的,其Ca/Mg比值大反映了湿热的气候环境。
(2)Ca/Sr和 Sr/Ba比值
表生环境中Ca比Sr易迁移,剥蚀区Ca/Sr比值大,表明风化淋溶或红土化作用弱,反映了气候干冷。沉积盆地内的Ca、Sr相对含量直接与温度有关。人们发现珊瑚骨骼中的Sr/Ca比值受到骨骼形成时的海水温度影响(1992年Beck等人成功地将利用珊瑚的Sr/Ca比推测海水温度的测量精确度提高到±0.05℃,对应的准确度也达±0.5℃,并由于其不受南北极冰帽体积大小的影响,所以是目前用来作古水温重建方法中较佳的选择);湖泊沉积物及其中的介形类壳体的Sr/Ca比值可以定量恢复湖水的盐度变化过程及流域的增温干旱化过程。结论是:沉积物的Sr/Ca比值愈高,水体盐度愈大,干旱气候愈显著。
也就是说,沉积物的Ca/Sr比值大反映了湿热的气候环境,这与本区的Ca/Sr比值与孢粉的统计分析结论一致。
对于Sr/Ba比值的环境意义,目前许多研究者认为其与盐度呈正相关关系,其高值指示水体盐度、矿化度较高,反映水体相对萎缩,标志气候干旱。但从本区的地球化学资料来看,Sr/Ba比值的环境意义并非完全如此。究其原因,他们均是基于Ba2+能与 结合形成难溶的BaSO4沉淀,并多从北方或沿海地区的盐盆中获得的认识。实际上,本区无论是现在还是第四纪时期,湘、资、沅、澧四水及长江和洞庭湖等大河大湖中均不可能有硫酸盐大量沉淀的环境,而可能与碳酸盐沉积环境有关。
本区(尤其是沉积物中)Sr与Ca的关系密切,Ba与K(尤其是红土中)的关系密切,从表7-2的相关系数上表现非常明显。Ba的化合物溶解度较Sr的低,即在表生风化红土化作用中,Sr比Ba更易参加到表生作用的循环中,随风化作用的加深,Sr/Ba比值减小。
表7-2 Sr、Ba与其他元素的相关系数在本区红土和沉积物中变化对比
在表生水溶液中迁移时,Ba2+易水解,易被近岸的粘土吸附沉淀,Ba的迁移率只有0.03%,比钙和Sr的迁移率低得多(刘英俊,1985);Sr在含钙的环境中,可通过化学和生物化学作用产生含Sr的沉积矿物,如方解石、白云石、文石等。故Sr 与Ca,及Sr/Ba 比值与CaO/MgO、Ca/Sr、ba值强烈地正相关,与Rb/Sr、K/Na、K/Ca显著地负相关(表7-3)。所以,沉积物的Sr/Ba比值高,与本区的Ca/Mg、Ca/Sr比值的意义相似,反映了湿热的气候环境。
表7-3 Sr/Ba与其他比值的相关系数在本区红土和沉积物中变化对比
(3)Rb/Sr比值
Rb、Sr的表生地球化学行为有差异,Sr相对易淋失,Rb因与K性质相似,则以类质同象进入含钾矿物中,使得风化产物中 Rb 相对富集。随着风化程度的加强,残留部分的Rb/Sr值逐渐增大,所以 Rb/Sr 比值是衡量剥蚀区风化淋溶或红土化作用强度的良好指标,在黄土-古土壤序列和湖泊沉积研究中已被广泛应用。
流域内化学风化率增大将相应地导致更多的锶带入沉积盆地,而使湖泊沉积物的Rb/Sr值变小。因此依据沉积物中Rb/Sr值的变化可以了解流域内风化程度的强弱,反馈制约流域内化学风化率的气候变化。气温越低,化学风化越弱,风化并淋溶进入沉积物的锶含量降低,Rb/Sr值增大;进入暖湿气候阶段后,决定沉积物锶含量的主要是降水,降水越多,风化并淋溶进入沉积物的锶含量增大,Rb/Sr值减小。这与本区的孢粉分布非常吻合,Rb/Sr与干冷孢粉具有较显著的正相关。
上述研究表明,无论红土或沉积物,Rb/Sr比值变化能很好地反映相应时期流域化学风化过程。由于岩石的化学风化是区域气温和降水量的函数,因此红土和沉积物的Rb、Sr记录较好地指示了流域内相应时期降水量和温度的状况。必须强调的是:红土和沉积物的Rb/Sr比值大小指示的环境意义正好相反,Rb/Sr比值大,在红土上代表湿热,而在沉积物上则代表干冷。
(4)K/Na、K/Ca和K/Rb比值
K与Na的关系如同Rb与Sr。
Na性质活泼,当以铝硅酸盐类如钠长石等形式存在的原生矿物风化后,钠转为硅酸盐、碳酸盐、重碳酸盐、硫酸盐和氯化物的形式,多被水流带离原地而进行迁移(但在干旱环境中钠盐易在原地及其附近累积)。因此,表生环境中钠元素的丰度高低主要取决于气候条件,即降水量、蒸发量和排水状况。在沉积物中钠元素高值时,反映偏干、降水量小、蒸发量大、排水状况不好的环境。
K的地球化学性质与Na 相似(同属碱金属元素和亲石元素,与 O、F、Cl 元素的亲和力强),但表生条件下受生态系统影响比Na大,K的生物亲和力比Na强得多,被淋滤出来的K很容易被风化产生的粘土矿物、有机物吸附或结合起来,从而以含钾的粘土矿物,如云母类或其他形式而相对富集于残余相(风化产物)中。因此,在剥蚀区,K/Na比值大,意味着湿热气候下的风化淋溶或红土化作用强。
在沉积区,K/Na比值大,意味着源区岩石土壤中的钠被水流带离迁至沉积盆地的量小,即流域内化学风化减小,从而使湖泊沉积物的K/Na值变大,反映的是区域环境干冷或低温。因此依据沉积物中K/Na值的变化亦可了解流域内风化程度及气候变化。气温越低,化学风化越弱,风化并淋溶进入沉积物的Na含量降低,K/Na值增大;暖湿气候时,降水越多,风化并淋溶进入沉积物的Na含量增大,K/Na值减小。但阶地红土区此时显示的却是相反K/Na比值。
K/Ca亦如K/Na,意义完全相近,并得到本区钻孔孢粉的有力佐证。
K/Rb,从河流沉积物→微咸水页岩→海相页岩K/Rb比值递减,似乎说明K比Rb相对难迁移些,但本区红土的因子分析等说明K/Rb与红土化呈反比,结论相反;沉积区亦与各类孢粉自相矛盾,故其影响因素复杂,不宜作为本区的环境指标。
(5)Fe/Mn比值
Fe、Mn都是变价元素,对环境的氧化还原性质反应敏感。
一般基性岩比酸性岩含有较丰富的铁元素;在沉积岩中主要以磁铁矿和黄铁矿形式存在;在富氧环境的风化物和土壤中多呈Fe2O3(褐铁矿、赤铁矿、针铁矿、钛铁矿等)形式,在缺氧的土壤环境中多以FeO、FeCO3或FeS(菱铁矿、硫铁矿)等形式存在。因此,铁元素在表生地球化学行为及过程的强度主要取决于环境中的游离氧、有机质含量、水分状况和pH值。
锰的地球化学性质与铁相似,均在富氧的环境中呈高价而残余富集,但由于Mn与O的亲和力明显低于Fe与O的亲和力,即Mn比Fe相对易迁移,发生Fe、Mn分离,所以红土化导致Fe/Mn 比值增高。
沉积过程相反。集水区的氧化还原条件、地质背景和植被状态均为影响Fe和Mn分离的因素,沉积地球化学分异使 Fe 先沉淀,导致 Fe/Mn 比值偏高,并可借此指示水深(谭红兵,1999)。随着气候向干热方向发展,水体的水位下降,氧化程度加强,Fe会先于Mn发生大量沉积。所以Fe/Mn值的高值表示干热气候条件下的水面降低过程。
3.TOC/N、TC/N比值
C、N均是生命元素。表生环境中C(或称总碳,TC)主要包含有各种有机碳(TOC)和无机的碳酸盐,及少量的碳元素(金刚石、石墨)。N在岩石和矿物中的存在形式有三种:元素氮、固定氮( )和非固定氮,其中约90%以 状态存在。表生作用中岩石中的C、N都可以被水溶解而带出,火山气、生物作用均可再将C、N带到湖及海洋中。所以,沉积岩中C、N高。在干燥地区的湖相沉积中可大量见到氮的盐类——铵盐、硝酸盐、亚硝酸盐,但海相沉积中数量很少,表明 N 比 C 相对难迁移。那么在剥蚀区,随着风化淋溶或红土化作用的增强,TOC/N、TC/N比值增大,即比值增大意味着湿热气候。
沉积物中的TOC由外源和内源两部分构成,前者主要受水热条件和矿物质营养的影响,后者取决于流域的温度和降水等气候条件。沉积物对有机质的保存能力取决于溶解氧、水温、沉积物质地及化学性质等,其中气候是主要因素。干冷条件下不仅有机质生产力下降,而且因入湖水量减少,导致湖水咸化,硫酸盐含量升高及其还原作用加强,有机质大多在硫酸盐的还原反应中被降解,反而不利于有机质的保存。反之,温暖湿润的气候既有利于陆生和水生植物形成,同时又因湖水淡化,水位升高,大部分有机质可被保存下来。根据青海湖岩心中TOC含量与岩心中孢粉组合和介形虫壳体氧同位素等资料的对比研究认为,在干冷半干冷地区TOC含量变化是古气候变化的重要依据之一,在湿润气候条件下生物的繁盛发育导致有机质增加;冷干气候为主时,生物发育贫乏,造成有机质丰度降低。N在沉积物中的变化指示了水体的营养状况,并主要受制于水体温度的作用。水体温度较低,N相应含量就较高。在稳定的N条件下,温度极大地影响浮游生物的生长,进而改变内源有机碳的含量。所以,TOC/N、C/N值则可较好指示沉积物中内外源有机碳成分及温度。
从本区文化层的元素组合特征已经知道:N为人类活动的特征元素之一,人类活动增强,则N含量增高,TOC/N、C/N值减小。
4.Ca/Cd、Zn/Cd、Zn/Pb、Zr/Hg、Zn/Cu、U/Th比值
本组6对比值的共性是地球化学性质相近,在不同的地质作用过程中具有相似的地球化学行为,表现出密切伴生。如Cd有近似于Zn2+和Ca2+的离子半径,因而常有Cd替代Zn和Ca的现象,Cd通常存在于锌矿、铅锌矿中。在没有外源输入的情况下,它们的比值在有限的范围内波动,在表生环境中,如土壤垂直剖面中,表现出强烈的一致性特征。若在某一环境介质中二者之间的相关性非常微弱,比值发生变化,可以认为它们具有不同的来源,其中一方可能是由人为源造成的。如Cd与Ca若两者相关性减弱,或比值发生变化,则可能有生物作用、或人为活动、或其他因素的影响。如当气候湿热,水体中生物茂盛,会因镉比钙更亲生物,生物吸收作用而降低水的Cd浓度,造成与之平衡的湖泊表层沉积物Ca/Cd比值升高;在此湿热气候环境下,尽管流域源区含镉岩石的风化会较强,但大流量涌入的河水将冲淡湖盆中水体的Cd浓度,同样造成湖泊表层沉积物Cd/Ca比值降低。湿热气候下水体为含氧相对较高的氧化条件,氧化条件下的生物分解易形成含氢离子较高的酸性环境,故沉积物Ca/Cd比值高又可反映环境的酸性和氧化条件。所以,沉积物Ca/Cd比值的高低,分别反映了气候的湿热和干冷、湖盆水体的氧化和还原、及酸性和碱性条件。只要分析了不同时期沉积层的Ca/Cd比值,就可推测区域环境变化的历史,对于重金属元素Cd的环境地球化学演化是重要的补充。
在此6对比值中,Th比较稳定,而U可因如施磷肥及其他人类活动使其含量增高,使U/Th比值增加。Zn/Cu亦如此,对其甄别是据本区文化层的元素组合特征而进行的,从第六章我们了解到,本区历史时期,Cu为一人类活动的特征元素,所以Zn/Cu减小、U/Th增大,代表人类活动的增强。
另4对比值Ca/Cd、Zn/Cd、Zn/Pb、Zr/Hg中分母Cd、Pb、Hg亦为本区人类活动的特征元素。人类活动的增强,这些重金属元素含量将增加,比值会减小。
另外,这些比值还有明显的地球化学环境意义,如Ca/Cd比值,表层海水中的镉会因生物所吸收浓度会较低,而当镉浓度较高的深层水团随涌升流带到海水表层造成Ca/Cd的比值降低会被记录在浅海珊瑚中,只要分析了珊瑚Ca/Cd比值,就可推测古海洋涌升流强度变化的历史。
5.B/Ga、F/Cl、Br/I、Cl/Br比值
该4对比值的地球化学环境意义均主要反映盐分的淋失或沉积盆地的盐度,可间接指示温湿条件。
(1)B/Ga比值
B和Ga是两种化学性质不同的元素,硼酸盐溶解度大,能迁移,只有当水蒸发后才析出;镓活动性低,难迁移。因此,通常认为B/Ga比值高,指示古盐度高,环境干热。但本区钻孔沉积物的B/Ga比值与各种湿热孢粉具有一致的显著正相关,表明湿热环境下,剥蚀区B比Ga带出得多(此时此地B/Ga比值减小),沉积区相应沉积的B比Ga多(此时此地B/Ga比值增大)。
(2)卤族元素比值
F/Cl、Br/I、Cl/Br为卤族元素对比值。对其研究的结果再归纳于表7-4。下面讨论其意义:
表7-4 洞庭湖区卤族元素对比值大所代表的环境意义比较
F、Cl、Br、I都能与金属化合生成典型的盐,所以称之为卤素,但因其在周期表中处于不同的周期,故地球化学性质亦有所不同。F、Cl虽均亲石,Br、I虽均亲气亲生物(Br还亲水,I更亲生物),但在潮湿气候条件下的岩石土壤风化过程中,F比Cl、Br比I、Br比Cl易被流水带出风化壳,故剥蚀区随红土化或湿热条件的增强,F/Cl和Br/I减小,Cl/Br增大。
沉积区F/Cl比值大,由孢粉反映的气候干凉是因氟在此条件下可与钙结合生成溶解度低的离子化合物CaF2。
Cl/Br比值大反映气候干热可以解释为:气候干,雨水少,从剥蚀区被流水带来的Cl 和Br均少,但因Br亲生物,被生物吸收或吸附,使Br带来的更少。平原区Cl/Br比值大,反映为相对Br的少,即在源区的Cl、Br均少时为干热。同样剥蚀区土壤中Cl/Br亦为大,故可认为同样是反映干热条件。
沉积区Br/I比值大,反映气候热,则是由于Br比I易被流水迁移带入沉积区,炎热条件,剥蚀区风化作用增强,I为生物吸收而留在原地,故Br/I在沉积区比值大,是更多Br随流水迁移至沉积区,在沉积物中Br含量增大。
6.其他元素对比值
其他元素对比值有:Ti/Nb、Zr/Nb、Al/Zr、Li/Si、Ti/Si、Cr/Ni、Co/V、Co/Ni、V/Ti、V/Cr、Mn/Cr、Co/Th、Cr/Sc、Cr/Th、Ce/La、Ce/Y,共16对。本课题均分别计算研究了它们在红土和沉积区各类样品中的变化情况,发现其地球化学意义亦非常明显。
这组元素除Si、Li外,大多是在地表分布较分散但化学性质稳定、不易通过再分配进行集中的元素,它们在一定的岩石和沉积物形成过程中,元素之间在量上具有一定的比例关系,在各种自然地质作用过程中,这种量上的比例关系在有限的范围内波动。如Th和Zr是土壤中两个抗风化能力很强的惰性的元素,即使经过数百万年的风化,Th/Zr值仍能有效地区分不同的土壤母质(Mathieu et al.,1995)。有的元素在表生过程中地球化学分异,可记录大量地学信息,这些元素间的组合与比值可作为研究岩石风化、第四纪环境的指标。如:
在洞庭湖周边剥蚀区,随风化红土化作用增强,或湿热增大,比值Al/Zr、Ce/La、Ce/Y、Co/Ni、Co/Th、Cr/Sc、Cr/Th、Ti/Nb、Ti/Si、V/Ti、Zr/Nb增加;Co/V、Cr/Ni、Li/Si、Mn/Cr、V/Cr减小。
在洞庭湖沉积区,Li/Si、Ti/Si 与湿润气候,Ce/Y、Zr/Nb 与干燥气候,Al/Zr、Ce/La、Ti/Nb与冷湿气候具正相关性。
尤其是Al/Zr,所有孢粉信息无例外地指向沉积物该比值高代表干凉的气候环境。从地球化学上分析,我们认为:在较干凉气候下,风化淋滤作用较弱,雨水较少,原岩土中以锆石形式存在的Zr比以粘土矿物形式存在的Al更难析出、搬运,在湖盆沉积物中Al相对较多,故Al/Zr比值相对增大。这一新的实用指标的发现,为利用地球化学资料研究古气候环境提供了重要的线索。
此外,本组比值还可用于示踪,如 Ce/Y、Ce/La、Ti/Nb、Zr/Nb、Al/Zr、Li/Si、Ti/Si、Cr/Ni、Co/V、Co/Ni、V/Ti、V/Cr、Mn/Cr、Co/Th、Cr/Sc、Cr/Th等。通过与源区岩石或疏松层的对比,可以帮助确定第四系的物质来源。可用于本项目其他课题的追源示踪研究中。
有人(Condie等)对花岗闪长岩上发育的古风化剖面研究发现,Co/Th、Cr/Sc、Cr/Th比值随风化程度加深而减少;V/Cr比值可指示沉积环境为贫氧的还原环境,等等。囿于篇幅,此处不展开讨论。
一、前言
贵州省都匀牛角塘锌矿床是目前镉含量最高的矿床,它的镉含量比地壳克拉克值高5~6个数量级,比工业对铅锌矿伴生镉的工业要求高几十到千倍,是不是独立镉矿床还有争议。有的称为独立镉矿床(刘铁庚,2000),有的称为富镉的锌矿床(叶霖,2000)。概缘于此,有工业意义的镉目前主要源于硫化物矿山的伴生镉。由于镉的地球化学行为与锌十分相似,在成矿过程中常与锌共生在一起,形成富集。所以铅锌矿床中,特别是低温铅锌矿床中有较高或最高的镉含量。
过去的研究主要集中在测试各种岩石(马东升,1989;Butler,1967)和陨石(Kevin,1974)的镉含量,水体中的镉含量和对环境的影响(何遂元,1989;周福俊,1987)。镉的地球化学,尤其是矿床地球化学研究的很少,仅有一些金属矿床中镉含量的论述。
众所周知:镉主要伴生在金属矿中,特别是低温硫化物矿床中。这些矿床的元素组合给我们研究可划分为7种类型:①Zn-Pb-Cd型(即铅锌型),以富锌矿床为主,如贵州牛角塘镉锌矿床。该种类型是目前镉的最重要的来源;②Ag-Pb-Zn-Cd(银铅锌型),如江西冷水坑,内蒙古甲乌拉,查干布拉根,河南破山和辽宁四平山门等银矿床的镉含量一般都达(0~1000)×10-6,最高达2603×10-6。随着银矿的大量开发,该类型将成为镉的重要来源之一;③Ag-Mn-Cd型(银锰型),如内蒙古额仁套勒盖银锰矿床和广西凤凰山银锰矿,镉含量为(0~1000)×10-6;④Sn-W-Cd(锡石硫化物型),以都龙、大厂,漂塘钨矿,箭猪坡钨矿及日本的Kaneuchi钨矿,Fujigatemi等钨矿床为代表;⑤Fe-Cd(硫铁矿型)以广东阳春黑石岗硫铁矿为代表;⑥Cu-Cd(铜多金属组合型),如湖南七宝山铜矿,瑞典Tunaberg铜矿和西天山一些铜矿;⑦U-Cd型(铀镉型),如湖南溆浦301矿铀矿。
牛角塘镉锌矿床位于贵州省都匀市近郊。贵州铅锌矿分布既广泛又聚集,也就是说全省83个县、市,有59个县、市有铅锌矿床(点)分布,但60%以上的矿床(点)集中于黔西地区(从威宁-赫章到纳雍-织金的NW向成矿带)和黔东地区(从松桃-铜仁到都匀-三都的NNE向狭长成矿带)两个地区。黔西成矿带富银,黔东成矿带富镉。黔东成矿带不仅铅锌矿床中有极高的镉含量,而且其他矿床中也很高的镉含量。该成矿带的镉含量由中部向两端有增加趋势。已发现的两个镉矿床,一个是牛角塘镉锌矿床,位于矿带的西南端,一个是湖南的叙浦三○一铀镉型矿床,位于矿带的东北端。
二、地质构造特征
(一)区域地质背景
区域地质构造背景是研究矿床形成机理非常重要的一环,只有搞清了区域地质构造背景,才有可能提出具有说服力的成矿机理。黔东铅锌成矿带位于扬子准地台和江南褶皱带两大构造单元的过渡带(贵州省地质矿产局,1987)。
黔东铅锌成矿带基本沿一条NE向的蔓洞区域大断裂分布。蔓洞大断裂是一组平行或近于平行的断层组成,长度大于50km,走向NE40°~50°,倾向NW,倾角60°~75°,宽20~60m,最大断距400m。NW盘上升,SE盘下降。蔓洞大断裂还是一同生断层,并多次复活。致使断层两侧的岩性明显不同,如杷榔组与乌训组实为同一地层,因其岩性不同,而命名为两个组名。位于断层NW盘的为杷榔组,主要为页岩夹泥灰岩;位于断层SE盘的为乌训组,主要由灰岩和泥灰岩组成,具深水沉积特征(李明道,1998)。
牛角塘镉锌矿床位于蔓洞大断裂的西南端,蔓洞断裂贯穿矿区。蔓洞断裂在矿区产生许多分枝,成帚状向南西撒开。而镉锌矿化就赋于这些分枝断裂两侧的下寒武统清虚洞组藻类白云岩中。矿区除发育一组NE向的断裂外,还发育近SN、NW和EW向的三组断层。NE向的一组控制着矿化的分布,即控矿构造。其他三组断层规模都不大,对矿体有一定的错动和破坏作用(图4-2)。
图4-2 牛角塘矿区地质图
矿区褶皱不发育,只有一些平缓的,小的箱状褶曲。较大的王司复背斜轴向近SN,两翼平缓,略成对称,倾角一般10°~15°,局部稍陡,牛角塘矿床位于其SE翼。在小背斜褶曲轴部,矿层增厚,加富;在小向斜褶曲的轴部变贫,减薄。
矿区主要出露上震旦统和寒武系。上震旦统和下寒武统主要是一套浅海—滨海相碳酸盐岩和细碎屑岩,其次是黑色页岩,泥岩和硅质岩。中—上寒武统由白云岩、泥质白云岩和页岩组成。Cd、Zn矿化主要赋存在下寒武统清虚洞组(1q)藻类白云岩中。清虚洞组分为上、下个岩两段。Ⅰ、Ⅱ、Ⅲ矿化层赋于第二岩性段白云岩中。高台组(2g)为一套互层的含黄铁矿炭质页岩,粉砂质、白云质页岩。石冷水组(2s)以白云岩为主,分上、下两段,第一段含有闪锌矿和方铅矿化,称第Ⅳ矿化层,但没工业意义。赋矿白云岩都是中厚层中—细粒白云岩,含有大量的藻类化石,在镜下看到密密麻麻非常拥挤的藻类化石(图版V-7)和其他生物化石碎屑。矿层顶部往往有一层厚度不等的黑色页岩和炭质砂质白云岩,对Zn、Cd的富集成矿可能起着屏蔽作用。
(二)矿床地质
牛角塘镉锌矿床有90个矿体,均成层状、似层状产出,与围岩为整合接触,且为渐变关系。矿体一般长150~500m,宽50~200m,倾角较缓,通常小于20°。最大的矿体是Ⅱ矿化带的ⅡC矿体,层状,长850m,最大宽度500m,倾向NW,倾角15°~20°。厚度变化系数为62.14%,品位变化系数为62.82%~82.17%。属于厚度稳定,品位变化均匀的矿体。矿化强烈地段与ⅡA连在一起。ⅢC矿体是本矿床第二大矿体,似层状,长560m,宽220m,倾向NW,倾角10°~20°。矿体南厚北薄,厚度变化系数为82.7%,Zn的变化系数为53.07%。厚度与含量成反比关系,厚度越大,品位越低,属于厚度不稳定,品位变化均一的矿体(陈国勇,1992)。
(三)矿石结构构造特征
矿石以块状和稠密浸状构造为主,还有大量的鲕状、草莓状和结核状构造,生物碎屑构造和微层理构造,偶见角砾状构造。结核分黄铁矿结核和闪锌矿结核(图版V-8)。鲕体或草莓体也分黄铁矿鲕体或草莓体(图版VI-1)和闪锌矿鲕体或草莓体(图版VI-2),还有非常圆的球形闪锌矿(图版VI-3)。黄铁矿鲕体或草莓体主要由黄铁矿组成,还有少量的白铁矿、闪锌矿和白云石。闪锌矿鲕体或草莓体主要是闪锌矿,其次是黄铁矿,还有少量的纤锌矿和白云石。还见到以白云石为主,还有黄铁矿和闪锌矿共同构成鲕粒或草莓体。表明黄铁矿,闪锌矿和白云石可能同时形成。张爱云等认为草莓状黄铁矿是低级藻类集合体(张爱云,1987)。陈庆认为草莓状黄铁矿是矿化的群体微生物,并在现代海洋中未固结的沉积物中发现了草莓状黄铁矿,并类似于矿床中发现的草莓状黄铁矿(陈庆,1981)。微层理构造主要是白云石条带与闪锌矿或/和黄铁矿条带构成。矿石以中-细粒等粒结构为主,还有交代结构、胶状结构(图版VI-4)和包晶结构,表明矿石具有明显的沉积特征,同时也存在后期热液的叠加改造作用。
(四)矿物组成
金属矿物主要有闪锌矿和黄铁矿,次之为方铅矿、白铁矿、纤锌矿和菱锌矿,还有少量的异极石、褐铁矿、毒砂、辉锑矿和雄黄,以及硫镉矿、菱镉矿、方镉矿(?)和自然银等。脉石矿物主要是白云石,还有少量的方解石、粘土矿物和石英,偶见重晶石和石膏。为一套典型的低温矿物组合。
闪锌矿基本全为细粒的浅色闪锌矿,主要为浅黄色、浅黄褐色、浅红棕色、淡灰绿色和无色等。晶形除他形粒状和半自形的闪锌矿外,还有许多草莓状、结核状和球形闪锌矿。在镜下常常见到闪锌矿草莓体核心有一红棕色或红褐色环(图版VI-2)。闪锌矿中常见方铅矿,黄铁矿和白云石包体,有时还见到硫镉矿包裹体。黄铁矿也以中细粒为主,其中可见闪锌矿包体和白云石包体。表示闪锌矿、方铅矿、黄铁矿和白云石为同生的。
(五)原生硫镉矿的发现
以前人们普遍认为硫镉矿是次生的,多产于硫化物矿床的氧化带(王璞,1987)。在牛角塘镉锌矿床却发现了原生硫镉矿。本矿床硫镉矿有七种产出形式:①呈大小不等,形状不规则的粒状集合体产于硫化物(黄铁矿、闪锌矿和方铅矿)晶粒间(图版VI-5);②以包体的形式存于闪锌矿中或黄铁矿中,硫镉矿的形态各异,有不规则粒状、蠕虫状、树枝状(图版VI-6);③围绕黄铁矿中方铅矿包裹体的周围分布(图版VI-7);④以硫镉矿细脉形式产于闪锌矿中(图版VI-8);⑤分布在菱锌矿粒状集合体中的硫镉矿和菱镉矿;⑥与菱锌矿一起组成细脉插白云石;⑦呈薄膜状或贝壳状产于氧化矿石裂隙表面。前四种产出形式的硫镉矿可能是原生的,后三种产出形式的硫镉矿可能是次生的。
镉比锌有更强的亲硫性,碱性也比锌强,所以,当镉达到一定浓度时,在弱碱性的还原环境形成硫镉矿的可能性比闪锌矿大。牛角塘镉锌矿床的闪锌矿中发现硫镉矿包裹体就是有力证据。此外,核工业部309队认为在溆浦301铀镉矿围岩中也发现了原生硫镉矿。
(六)矿石类型
根据矿石的氧化程度把矿石分为强氧化矿石、弱氧化矿石和原生矿石。矿石的氧化程度原想根据w(Fe2O3)/w(FeO)的比值划分,但是由于样品的粉碎和分析过程全部暴露于空气中进行,有一部分FeO氧化为Fe2O3,致使上述想法未能实现。现根据样品中褐铁矿和硫化物的含量进行划分,原生矿石是矿石中不含或含非常微量的褐铁矿。强氧化矿石是矿石中几乎不含或含极少量的硫化物,即铁帽或接近铁帽。二者间的矿石划归为弱氧化矿石。原生矿石依据金属矿物的含量分为方铅矿闪锌矿矿石,黄铁矿闪锌矿矿石和闪锌矿矿石。方铅矿含量在>1%,闪锌矿含量>5%者称方铅矿闪锌矿矿石。黄铁矿和闪锌含量均>5%者为黄铁矿闪矿矿石。方铅矿含量
三、地球化学特征
(一)分析方法
采用原子吸收光谱仪测定Cd、Ga、Ge、Ag、Pb、Zn和Fe,并抽样经过中国科学院地球化学研究所矿床开放实验研究室ICP-MS复查(测试者漆亮高级工程师),其结果与原子吸收光谱仪的测试结果基本一致,误差通常为5%~10%,最大误差不超过25%。Ag的复查结果与原子吸收光谱的测试结果明显不同,误差一般30%~60%,最大误差大于100%。因为Ag的ICP-MS分析结果误差大。
(二)矿石的化学成分
矿石的化学成分比较简单,仅有Cd和Zn的含量达到工业开采的要求,Ag、Ga、Ge和Pb具综合利用的价值。矿石中有用元素含量见表4-9。从表4-9可看出:Cd极大富集,其含量基本都在1000×10-6以上,最高达1.43%,平均为4262×10-6。比地壳克拉克值(0.2×10-6)高5~6个数量级,比工业对铅锌矿床伴生Cd的工业要求高几十倍到千倍。是国内外金属矿床中含Cd最高的矿床。国内外其他铅锌矿床的Cd含量通常为100×10-6~500×10-6(涂光炽,1984;王育民,1988;Yasuhiro,1988),其中含量最高的是我国柴河铅锌矿床,Cd含量在2000×10-6以上,其中铁铅锌矿石Cd的含量达3790×10-6(涂光炽,1984)。
表4-9 不同类型矿石一些元素含量一览表
续表
矿石类型不同,镉含量也不同。对于原生矿石来讲:闪锌矿矿石的镉含量最高,为方铅矿闪锌矿矿石的3.91倍,黄铁矿闪锌矿矿石的1.97倍。也就是说:方铅矿闪锌矿矿石的镉含量最低,其次是黄铁矿闪锌矿矿石。黄铁矿闪锌矿矿石的Ge(平均为25.6×10-6)和Ga(17.8×10-6)含量最高,均比闪锌矿矿石高66%以上,比方铅矿闪锌矿矿石分别高78%和6%,表示Ge和Ga可能与黄铁矿关系密切。Cd与Zn呈正相关关系(图4-3),相关系数为0.68398(n=48),说明Cd与闪锌矿有关。Cd与Ga、Ge均无明显的关系。
牛角塘镉锌矿床的锌含量平均为 17.89%,最高达 38.70%,富集系数在 2553 以上。而铅含量较低,一般<0.1%,只有个别矿体的局部地段含量达10%以上。银含量虽不算很高,但比较稳定,一般在 15×10-6 ~30×10-6之间,最高 40.98×10-6 ,平均含量为20.33×10-6。Ge含量变化大,一般变化在 n×10-6 ~30×10-6 ,最高到 58.1×10-6 ,平均为19.0×10-6,富集系数为12.7。比工业对铅锌矿中伴生Ge的要求还高1.9倍。Ga含量从0.00n×10-6,到101×10-6,平均为42.1×10-6,富集系数为2.8。
图4-3 牛角塘镉锌矿床的w(Zn)-w(Cd)图
图4-4 牛角塘镉锌矿床的w(Cd)-w(Zn)/w(Cd)图
原生矿石与氧化矿石相比,强氧化矿石 Cd、Zn、Ge和Ga等产生贫化,分别比闪锌矿矿石低683%、390%、162%和124%,但比地壳克拉克值和区域地层中相应元素的含量高几到几百倍。表明强氧化矿石(包括铁帽)的Cd和Zn含量可以作为这类矿床的标志。弱氧化矿石与原生矿石比,Cd和Zn显著富集。说明风化淋滤早期可形成Cd、Zn的次生富集。
矿石的w(Zn)/w(Cd)比值一般为35~85,最大比值为107.1,明显小于其他矿床的比值。其他金属矿床的w(Zn)/w(Cd)比值一般大于100,最大的达513(涂光炽,1984;王育民,1988;Yasuhiro,1988)。刘英俊等(1984)指出w(Zn)/w(Cd)比值通常为100~300,表示本矿床Cd的富集系数比Zn大。w(Zn)/w(Cd)与Cd成负相关关系(图4-4),相关系数为0.6840(n=48),暗示Cd可能以类质同象存在于闪锌矿中。
矿石类型不同,w(Zn)/w(Cd)比值差别明显。方铅矿闪锌矿矿石的w(Zn)/w(Cd)值最小(40.6),黄铁矿闪锌矿矿石的值最大(61.2),闪锌矿矿石的值居中(51.3)。原生矿石与氧化矿石相比,弱氧化矿石的w(Zn)/w(Cd)值最小(41.4),强氧化矿石的值最大(61.2),原生矿石居中。由于Zn比Cd活泼,在风化淋早—中期,Zn优先被淋失掉,Cd还以CdS的形式残留原地。虽然CdSO4与ZnSO4有相同的溶解度,但由于Cd比Zn有较大的离子半径和较低的能量系数,能长期停留于水中,在风化淋滤晚期,Cd比Zn贫化的更强烈。
(三)镉的赋存形式
矿石中镉有三种存在形式,即类质同象、独立矿物和吸附形式。其中以类质同象形式存在镉最重要,约占矿石镉的87.86%,独立矿物的镉占矿石镉的12.14%,估计还有少量的镉以吸附形式存在。类质同象形式存在的镉主要分布在闪锌矿中,约占矿石镉含量的82.20%。其余矿物对矿石的贡献排序是:独立镉矿物—菱锌矿—黄铁矿—方铅矿—白云石(表4-10)。
表4-10 主要矿物对矿石中镉的贡献
闪锌矿(包括纤锌矿)中镉的含量最高,一般为1000×10-6~30000×10-6,所以闪锌矿中最高镉含量达75%(因为闪锌矿与硫镉矿为连续类质同象系列),平均为1.29%(镉含量>10%的不参加平均)。比国内外闪锌矿的镉含量高三倍多。国内外闪锌矿的镉含量通常为200×10-6~1000×10-6(涂光炽,1984;王育民,1988;Yasuhiro,1988),美国科罗拉多州中部一些铅锌矿床闪锌矿的镉含量最高的,达5000×10-6~18500×10-6,我国柴河铅锌矿闪锌矿的镉含量也很高,平均为4960×10-6。闪锌矿中的镉(除偶见硫镉矿的包体外),主要成均匀分布,呈类质同象形式存在。菱锌矿、方铅矿、黄铁矿和白云石的镉含量也很高,比国内外相应矿物的镉含量高几十到几万倍。由于Cd+2可以置换Ca+2,白云石的镉可达165×10-6,比地壳克拉克值(0.2×10-6)高八百多倍,比碳酸盐岩的平均丰度(0.035×10-6)高5个数量级。
(四)闪锌矿-硫镉矿可能存在为连续的矿物系列
由于以前测得闪锌矿中镉含量很少超过1.8%(涂光炽,1984;Yasuhiro,1988),纤锌矿可达6%以上,因而人们普遍认为镉只能有限的置换闪锌矿中锌。鉴于CdS与ZnS有同样的结晶化学性质——同属闪锌矿型结晶类型结构,相同的四面体配位,相同的价态和接近的原子半径(前者1.333×10-10m,后者=1.490×10-10m)和共价半径(前者=1.25×10-10m,后者=1.48×10-10m),表明Cd和Zn可以进行完全类质同象置换。王璞等指出:两个元素的原子(离子)半径R1-R2/R2Cd-RZn/RZn)为11.78%,表明Cd与Zn可以完全的类质同象代替。而且过也曾有纤锌矿的Cd含量达49.6%云的报道(王璞,1987),只是没人作系统的研究,而没认识到。我们多次用不同方法的反复测试,发现牛角塘镉锌矿床中锌硫化物的Cd可从低含量连续变化到高含量(0.0467%~75.14%),硫镉矿中的Zn含量相应地从高含量连续变化到低含量(66.64%~2.43%)(表4-11),而且Zn与Cd呈现出很好的负相关关系,一个光片的相关系数为-0.99752(n=13,图4-5),或多个光片的相关系数为-0.98063(n=34,图4-6)。也得到透射电镜的证实(图4-7~4-9)。同时又发现菱锌矿与菱镉矿中的Cd与Zn含量呈现负相关,而且是连续变化的(图4-10~4-12)。进一步证明Zn与Cd是完全可以连续类质同象置换的。
表4-11 闪锌矿-硫镉矿(菱锌矿)电子探针分析结果(wB/%)
图4-5 L3-21样品闪锌矿的w(Cd)-w(Zn)图
图4-6 闪锌矿-硫镉矿的w(Zn)-w(Cd)图
图4-7 硫镉矿透射电镜扫描图(样品号H-12)
图4-8 闪锌矿透射电镜扫描图(样品号H-12)
图4-9 闪锌矿的透射电镜扫描图(样品号H-12)
图4-10 菱镉矿透射电镜扫描图(样品号B-1)
图4-11 菱锌矿的透射电镜扫描图(样品号I-6)
图4-12 菱镉锌矿的透射电镜扫描图(样品号I-6)
四、稀土元素和微量元素地球化学
稀土元素和微量元素能够带来岩(矿)石形成地球化学环境和物质来源的重要信息。在火成岩研究时被广泛应用,而且取得非常好的效果,在矿床方面的应用仍不够成熟,还在探索中。
(一)稀土元素地球化学
从ICP-MS光谱测试牛角塘区域和矿区岩(矿)石的结果(表4-12)看:区域地层白云岩(1q)的稀土元素含量及配分模式与矿石基本相似。配分曲线均为向右缓倾斜的曲线(图4-13),除块状闪锌矿矿石有清晰的Ce负异常外,余者为均弱的正异常,弱的Eu负异常,LREE/HREE比值和倾斜率大致相同。但也有小的差异。表现在从区域白云岩—稀疏浸染矿石—稠密浸染状矿到块状矿石为渐变关系。如区域白云岩—稀疏浸染矿石—稠密浸染状矿—块状矿石的稀土总量依次减少,分别为13.71×10-6,11.36×10-6,9.54×10-6和7.92×10-6,再如δCe异常值依次为1.13,1.01,1.17和0.42(表4-12),说明白云岩与矿石有相同或相似的物源,形成的物理化学环境是渐变的。
图4-13 牛角塘镉锌矿床的稀土元素配分曲线
表4-12 区域和矿区岩矿石的稀土有关参数(wB/10-6)
(二)微量元素地球化学
矿石的微量元素含量与区域地层白云岩明显不同。矿石显然富亲硫元素(如Ga、Ge、As、Cu、In和Co等),区域地层白云岩富亲氧元素(如Sr、Rb、Zr、Hf和Ta等),如矿石的Ga、Ge和As含量分别是区域地层白云岩的6~20多倍,10~100倍和2.8~16倍;而Zr、Hf、Nb、Th和Ta的含量仅相当区域地层白云岩的11%~60%,5%~7%,6%~11%,7%~16%和0.4%~21%。但是这种差异是渐变的过渡关系(表4-13)。如Ga和Ga含量从区域白云岩的(0.616~683)×10-6和(0.294~0.355)×10-6,到稀疏浸染状矿石的5.48×10-6和3.795×10-6,再到稠密浸染状矿石的9.39×10-6和23.95×10-6,最后到块状石的12.309×10-6和29.074×10-6。说明区域白云岩在相对氧化的环境形成,矿石在相对还原条件形成,两者之间为渐变关系。
表4-13 微量元素一览表(wB/10-6)
将牛角塘镉锌矿床闪锌矿的微量元素投在lnw(In)-lnw(Ga)图上(图4-14),都投在沉积改造矿床区域。表明该矿床属于沉积改造型矿床。
图4-14 牛角塘镉锌矿的lnw(Ga)-lnw(In)图
五、包裹体地球化学特征
一般特征
与矿有关包裹体是成矿热液的缩影和代表,它的成分和物理化学信息就是矿液的成分和成矿时的物理化学条件。所以包裹体特征、包裹体成分和各种物理化学参数的计算对研究矿床成因都非常重要。
闪锌矿和碳酸盐矿物的包裹体基本全为原生包裹体。只是包裹体数目少,个体小。一般为3~8μ,个别达16μ。以液体包裹体为主,汽液比多
包体成分采用爆裂法(爆裂温度为300℃)取汽、液,用气相-液相色谱测定。测定结果和有关参数见表4-14中。由表4-14可知:
表4-14 牛角塘矿床包裹体成分一览表(wB/10-6)
(1)包裹体的阳离子以 Ca2+和 Mg2+为主,还有Na+和 K+;阴离子主要是,其次为 Cl-和 F-,表明成矿热液是型溶液。
(2)闪锌矿的pH值均7:二者的Eh值均为负值。表明闪锌矿形成于弱酸性的还原环境,白云石形成于弱碱性的还原环境。
(3)包裹体明显富有机组分。如CH4含量为(1.12~5.32)×10-6,平均为2.27×10-6,其中闪锌矿的平均值为2.82×10-6。而其他金属矿床包裹体的CH4含量多小于1×10-6(戚建中,1998);再如N2含量一般为(1.43~29.96)×10-6,平均为16.74×10-6,其中区域白云石包裹体N2的含量平均值为29.76×10-6。而金矿床包体的N2含量一般小于1×10-6(戚建中,1998)。N2主要富集在空气和生物体中。暗示矿床可能是表生的,在成矿过程中可能有生物的参与。
(4)闪锌矿包裹体明显富K+和 Cl-,区域白云石富 Na+和 F-。闪锌矿包裹体的 K+和 Cl-平均含量分别为区域白云石的1.41倍和2.04倍。而Na+和 F-含量只相当区域白云石的7/10和9/10。一般认为K与岩浆热液有关,Na与海水或热热卤水有关。表示形成闪锌矿的热液有地下热水的参与,区域白云石与海水有关。
(5)闪锌矿包裹体的盐度,矿化度,Eh和还原参数最大,pH值最小,区域白云石的恰恰相反,盐度,矿化度,Eh和还原参数最小,pH值最大。如前者的盐度、矿化度、Eh和还原参数分别为后者的4.2倍、5.6倍、1.9倍和2倍(表4-15)。表明闪锌矿是在高盐度,高矿化度、相对还原的弱酸性环境形成,区域白云石是在低盐度、低矿化度、相对氧化的弱碱性环境形成。
表4-15 一些包裹体的有关参数
(6)从闪锌矿到脉石白云石再到区域白云石的包裹体成分和有关参数是渐变的,过渡的。F-、Na+、H2、N2 和 H2 O 的含量以及 pH 值是逐渐增加的,如 Na+,N2 平均含量,闪锌矿为9.05×10-6 ,12.99×10-6 ,增至脉石白云石的10.78×10-6 ,17.05×10-6 ,再到区域白云石的13.49×10-6 ,29.76×10-6。Cl-、K+、CO2 和CH4 含量以及 E h和氧化还原参数是依次减少的(表4-15)。显示它们有相同的物源,只是随着离物源距离的远近和形成地球化学环境改变而逐渐升高或降低。
六、同位素地球化学
稳定同位素是矿床研究普遍应用的一个非常重要手段,它能为矿床成类型的划分和成矿物质来源提供比较有说服力的证据。
(一)硫同位素
牛角塘镉锌矿床硫同位素组成的最大特点是:矿床强烈富重硫,δ34S有很大的正值。一般为16.01‰~29.29.81‰,平均为24.44‰(43个样品),在直方图上成呈塔式分布(图4-15)。而且闪锌矿、黄铁矿和方铅矿的δ34S 平均值非常接近,略有差别。闪锌矿最大(24.80‰),方铅矿最小(23.43‰),黄铁矿居中(24.31‰),说明它们有共同的硫源,而且基本达到平衡。王云华等(1996)根据硫化物对计算的矿床形成温度与实测温度相似就说明矿床形成时硫同位素达到了平衡。
图4-15 牛角塘镉锌矿床的δ34S柱状图
如此高度富集重硫同位素的硫源可能有两种,一是来自地层中的硫酸盐,另一种是来自海水中硫酸盐。国外一些学者(Donnelly,1973)根据现代海洋沉积物中硫同位素的研究和实验,认为在封闭—半封闭潟湖相或海湾环境中的硫酸盐在微生物作用下生成的硫化物可以强烈富集34 S,甚至接近硫酸盐的δ34 S。粤北一些铅锌矿床致所以显著富34 S,即有很大的δ34S值,如凡口铅锌矿床的δ34S=14.5‰~27.8‰。涂光炽等(1988)认为,这些矿床的S就是微生物作用于封闭-半封闭海湾海水中硫酸盐,还原生成的硫化物S。
(二)氢氧同位素
由于白云石主要为沉积成因,晶粒细小,包裹体极少,测定包裹体流体的氢氧同位素难度大,到目前尚未见到有关牛角塘流体氢氧同位素的资料。
牛角塘镉锌矿床碳酸盐的δ13CPDM=-2.49‰~-1.52‰,平均为-1.88‰;δ18OPDM=-10.19‰~-8.57‰(δ18OSmo=21.43‰~19.81‰),δ18OSmo值和δPDB13C值比海相碳酸盐的偏小,比岩浆碳酸盐的偏大,与广东凡口热水沉铅锌矿床碳酸盐的碳、氧同位素(=-2.85‰~0.06‰,δ18OSMOW=-15.20‰~-18.05‰)相似(表 4-16)。暗示牛角塘镉锌矿床的碳酸盐的氢、氧同位素主要来自沉积碳酸盐岩,也有少量深部碳酸盐参与,更类似于热水沉积碳酸盐岩。
表4-16 碳酸盐矿物的氢、氧同位素组成
(三)锶同位素
牛角塘矿床矿石的87Sr/86Sr为0.708857~0.713185,平均为0.7106865,区域地层白云岩的为87Sr/86Sr值为0.711007~0.710366,平均为0.710687,二者非常相似,与沉积碳酸盐岩的锶同位素(0.7086~0.7163)相似(表4-17),明显小于同时测定的江西冷水坑斑岩型银矿床(0.7212~0.7996)。说明牛角塘矿床的锶主要来自地壳,可能还有深源锶的加入。
表4-17 镉锌矿石的锶同位素
(四)铅同位素
牛角塘镉锌矿床有18个铅同位素数据。从这些数字看,矿床的铅同位素组成比较稳定,变化范围很小(表4-18)。206Pb/204Pb为18.057~18.236,207Pb/204Pb为15.670~15.802,208Pb/204Pb为38.099~38.651,变化率分别为1.06%,1.16%和1.45%(n=15)。铅同位素的变化范围基本都
矿石、方铅矿和闪锌矿的铅同位素组成与赋矿围岩下寒武统清虚洞组相似,表明它们有相同的铅源。与下寒武统乌训组铅同位素组成显然不同,乌训组的铅同位素组成变化范围大,206Pb、207Pb和208Pb与204Pb的比值也大,显示矿石与乌训组地层有不同的铅源。因为乌训组主要为细碎屑岩,铅的来源比较复杂。并与热水成因的凡口铅锌矿类似(陈学明,1999),反映牛角塘镉锌矿的铅源与热水沉积有一定关系。
方铅矿、闪锌矿和矿石的模式年龄非常相似,约为500Ma,与容矿围岩的时代接近。容矿围岩下寒武统清虚洞组地层的模式年龄700Ma,下伏的乌训组的模式年龄出现负值,与地层实际形成时代显不符。因为清虚组和乌训组的铅同位素比值变化范围较大,不是正常铅。
表4-18 牛角塘矿床的铅同位素组成
七、成矿机理
通过以上的论述和分析,不难看出牛角塘镉锌矿是比较典型的层控矿床,在成矿过程中有微生物作用和热水的参与。
众所周知:晚震旦世和早寒武世是全球性火山活动最强烈时期之一,火山喷发不仅为大洋提供大量海水,而且也供应了许多成矿物质和营养物质,水温上升,海平面上升,因而生物非常茂盛,是富金属黑色岩层形成的最重要时期。
牛角塘地区在晚震旦世和早寒武世时处于稳定的扬子海盆与活动的江南海盆之间的分水坝区。活动海盆就暗示有强烈的火山喷发和热泉溢出,为牛角塘镉锌矿床的形成供应了大量 Cd和 Zn等。如在圣海伦斯火山口附近,镉受火山气体及其升华物质的作用而活化,最后形成固相的硫镉矿(中科院地化所,1997)。在对现代洋底扩张中心的热水沉积作用中,含金属沉积物中主要成分之一就是镉(Ona,1988)。这表明在热水沉积作用过程中,镉能够被活化并发生一定程度的富集,实际上,热水沉积作用下镉的富集程度有时会很高,甚至能发生超常富集。稳定的海盆意味着没有或火山活非常弱,有很少深部物质加入。说明两个海盆水的化学组成和物理化学性质可能明显不同。随着海平面的升降,而时隐,时现,不仅造就过渡带的地球化学环境十分复杂,而且还出现不少封闭或半封闭的潟湖或海湾,阳光充足,生物十分旺盛。当海平面上升时,分水坝被淹没,地台型的扬子海盆水与地槽型的江南海盆水混合。原有的地球化学环境遭到破坏,建立新的平衡,可能引起 Zn、Cd等一些化学元素的沉积。当海平面下降,分水坝露出海面,形成许多封闭的潟湖和半封闭的海湾。由于蒸发作用,又会导致 Zn、Cd等一些元素的沉淀。牛角塘矿床有重晶石存在,区域发现许多重晶石矿床(点),表明矿床形成时该区经过潟湖或半封闭海湾时期。
生物活动,除引起海水pH,Eh等物量条件改变,还可以促使Cd、Zn等元素的沉淀外,某些生物本身可以吸收大量Cd,如勒斯特·郎格指出海水中的Cd主要存在于生物中(勒斯特,1985),刘英俊等(1984)指出一些干的海洋生物中含有(0.03~11)×10-6的镉,在人体的肾脏中曾发现高达1000×10-6的镉。说明某些生物或生物某个部位对镉特别喜爱,可以大量富集镉。当这些生物死亡,堆积起来时,便可以形成镉大量富集。牛角塘镉锌矿床大量草莓状闪锌矿和黄铁矿和矿层顶板经常存在一层黑色页或砂质白云岩就是生物作用的证据。在以上各种作用下形成贫矿层或矿源层。
在加里东构造运动的影响下,蔓洞大断裂产生活化,被封闭在地层中富含Cd、Zn的海水或裂隙水(包括空隙水)沿蔓洞断裂上升,叠加改造原有贫矿层或矿源层,形成第二次富集,成为今天的牛角塘镉锌矿床。
4.1.1 固体废弃物的定义、研究目的
固体废弃物(solid waste),简称“废物”,亦称“垃圾”,是人类生产、生活过程中不断废弃的各种固态或半固态(泥浆状)物质。应该指出的是,废物的概念具有相对性,即某一过程的固体废物,可能是土壤、水、大气环境的“污染源”;但随着时、空等条件的变化、可以重新在经济循环中发挥作用,成为另一过程的原材料,即成为再回收利用的“二次资源”。随着观念和科技进步,换一个视角对废物进行科学考察,就会有一个全新的认识。如废纸,可以成为再生纸浆生产的原料,即在后一过程中,废纸又不再是废物。因此,有人将固体废物看成是“放错了地方的资源”。
目前,在全球范围内,固体废弃物已对地质环境和生态环境产生了种种危害,使许多国家、地区深受其害。这不仅对社会进步和当代人类的健康造成了威胁,而且将危及人类后代的发展及21世纪的持续繁荣。如何安全地排放、处置不断产生的固体废弃物,已受到世界各国的普遍重视。其中积极开展固体废弃物的排放、处置及环境地质问题研究,就是要使人类活动与周围生态环境高效和谐,即高效地利用环境巨大的自净力,使生态系统效益最高,同时又与环境和谐融洽,不破坏脆弱的地球生态环境,使生态环境恶化的风险降为最小,保护和促使地质生态环境向良性循环发展,可持续发展得以保证。
4.1.2 固体废弃物的产生
固体废弃物的产生有其必然性。可以毫不夸张地说,只要有人类生活和生产活动,就始终存在并不断地产生废物。人们在索取和利用自然资源从事生产和生活的各个环节过程中,由于受时代条件、科学技术条件和生产目的、经济效益等主客观条件的限制,总要将其中的一部分作为废物、垃圾丢弃。甚至某一时代成功的产品,随着超过产品的正常使用寿命,或生活水平提高的产品“更新换代”,也会成为废物。尤其是上世纪后半叶,随着世界人口急剧增长,都市化进程加快,以及科技迅猛发展和生活水平提高,导致工农业、家庭和其他活动产生的废物,包括成分及数量、种类都在不断地增加、变化。其所产生的环境地质问题也在不断地变化。据20世纪90年代资料统计,全球年产垃圾已超过100×108t,仅美国的年产垃圾量就达30×108t,欧共体年产垃圾共22×108t。
从某种意义上看,到21世纪中后叶,科技和生产工艺肯定会有极大的进步,固体废弃物的产生仍然不可避免。当然,废物产生的量将会比今天少。但新工艺产生的新种类废物所带来新的环境地质问题,如近年来西方国家十分重视的毒害性有机污染,绝大部分来自高新科技的人工合成物,其中许多是“三致”物质,含量虽低但毒性大。因此,新废物产生的量虽少,但对环境的危害亦不容忽视。
4.1.3 固体废弃物的分类、特性
固体废弃物有多种分类方法,可以根据其来源、化学性质、危害特征和管理需要等分别进行分类。一般而言,许多国家按来源分类,如欧美国家按固体废弃物来源分为:工业固体废弃物、矿业固体废弃物、城市固体废弃物、农业固体废弃物和放射性固体废弃物等五大类。各类固体废弃物的特性差异悬殊,所产生的环境地质问题各异。
4.1.3.1 工业固体废弃物
工业固体废弃物(industrial solid waste)是指在工业生产、加工和产品使用过程中,甚至治理“工业污染”中所产生的废渣、废屑、粉尘、污泥等,其大部分来自工业生产活动的各个环节,部分来自产品流通、消费环节,包括产品超过使用寿命或更新换代成为废弃物。
据统计,1980年美国工业固体废弃物年排放量为4×108t,1982年日本工业固体废弃物年排放量为3.2×108t。各工业发达国家工业固体废弃物的生成量以年3.2%~4.5%的速率递增。目前,全球年产约21×108t工业废物和3.4×108t危险废物。发展中国家的工业固体废物排放量亦与本国经济增长率同步,一般年递增2%~3%,部分国家略高于工业发达国家。生产工艺、技术落后和粗放式的资源消耗导致工业垃圾成分复杂,复合污染严重。尤为甚者,不惜牺牲局部环境来换取经济增长。
工业固体废物主要排放源是冶金工业、石油化工工业、食品工业、造纸工业、橡胶制革工业、化学工业、电器机械工业、服装工业和交通工业等各种工业系统。
工业固体废物的特点是来源广、排放量大、占地多。据统计,到1990年止,我国工矿业固体废弃物堆存量达64.8×108t,占地583.9km2。虽然不同工厂的污染质成分各异,但从总体上看,含污染质多,成分复杂,不易净化,甚至会产生复合污染。尤其是某些化学工业产生的危险废物,易燃或具腐蚀性、毒性,管理不善时易污染空气、水体、土壤,恶化环境,或发生燃烧、爆炸、中毒等危险事件;而且危害久远,不仅威胁当代人类的健康,使人体中毒、致癌,甚至还波及子孙后代致畸、致残。
4.1.3.2 矿业固体废弃物
矿业固体废弃物(mineral solid waste)是伴随各种天然矿产资源、矿物开采和选矿过程而产生的废石、废渣、尾矿砂等。
矿业资源开发,要消耗两种自然资源——矿产资源和环境资源。各种矿山矿业固体废弃物的特性不尽相同。尤其是有色金属矿山,目前从矿石中提炼出有价值的成分往往只占很小比例(百分之几到千分之几),而从工业角度看其中极大部分,近期利用价值不大,而成为废石、废渣。据20世纪70年代末资料,仅就美国年产矿业固体废弃物就高达17×108t。这些数量极大的废渣进入环境后,既改变原有地貌,又对环境产生种种危害。其相互间作用机理复杂,直接或间接地恶化工程地质环境。
例如:金属、有色金属矿山、以每生产1t矿石为例,露天剥离的废石达4t左右,有时高达6~8t以上。地下采矿也需多采出0.5~1.5t废石。大量的废石、低品位矿渣常常就近沿沟、顺坡堆放,破坏了原地表植被生态体系,成为现代人工地貌的一部分。尤其是我国西部山区,原有地质生态环境十分脆弱,旱、雨季分明,沿沟、顺坡堆积的采矿废石堆,极易产生破坏性滑坡、泥石流灾难。而更为严重的潜在危害则是在不易觉察的天长日久的缓慢演变中成为现实。由于人工改变了矿石及围岩原来的地下封闭缺氧环境状态,矿业废石、矿渣呈碎块状,与空气接触的表面积增大,直接大面积地暴露在地表开放的富氧环境中,加速了风化作用进程。尤其是硫化物类矿床废石,经日晒雨淋,加快了有害重金属元素如汞(Hg)、铅(Pb)、镉(Cd)、铬(Cr)及砷(As)的扩散和可溶性硫酸盐等有害物质的淋溶,顺地表降水冲刷、迁移进入土壤环境及水环境,毒化土壤,污染水体,并成为长久潜在的污染源。尤其是某些有色金属、稀土元素矿山和磷矿山含有放射性杂质,采矿废石、矿渣的任意堆放,就会造成环境中放射性元素的扩散、污染、加重了对生态环境的危害。
能源资源煤矿的采煤废石——煤矸石大量堆置,形成黑灰色人工矸石山丘地貌,既破坏了周围景观的和谐,又争占耕地、良田,还引发多种环境灾害。煤矸石长期暴露在空气中,加快了风化进程。一方面,煤矸石所含有机质、黄铁矿等成分使其易氧化自燃,产生大量CO、NO2、SO2、H2S、苯并芘等废气污染空气环境,影响人群身体健康并使呼吸器官疾病、癌症高发。另一方面,大量的有机质成分和可溶性硫化物、重金属盐类,甚至某些煤矿废石含有放射性元素杂质等,通过风化、大气降雨淋溶外渗,污染地表水体环境,甚至污染地下水,如我国抚顺煤矿地区(图4.1)。资料截至1991年,在我国1200座矸石山中,约有1/3自燃,如宁夏的大部分煤矿山、山西太原西山煤田东、西矿区;河南焦作、平顶山矿区以及阳泉矿务局二矿煤矸石堆自燃,严重污染大气。堆积如山的煤矸石还易风化失稳,发生滑坡、泥石流危害。如1972年,美国西弗吉尼亚州的法罗山谷暴雨后诱发产生煤矸石泥石流灾害,17×108m3的煤矸石流以5.8m/s的速度下推27km,造成116人死亡、546间房屋和1 000余辆汽车被毁、4 000余人无家可归。
图4.1 抚顺地区矸石山分布图
尾矿砂是矿山在选矿和回收目前有经济价值的物质成分后,产生的质地均一的岩石粉粒集合体。它对环境的影响取决于所含有害元素、物质的化学活泼性和排放位置、处置条件等。因尾矿砂粒度较细,一般在0.5~0.05mm之间,大风吹扬和雨水冲刷易流失,进入水体或土壤环境,造成污染危害。
4.1.3.3 城市固体废弃物
城市固体废弃物(municipal solid waste),俗称城市垃圾和粪便,主要来自城市居民的消费、城政建设和维护、商业及文化、医疗等活动。随着都市化进程加快,城市人口激增,城市运作功能配置失调,以及生活水平逐渐提高,城市固体废弃物数量增长迅猛。据20世纪90年代资料,工业发达国家人均年排放废物3~4t,发展中国家人均年排放废物约1~1.3t。
城市垃圾的成分随不同国家,以及经济生活水平、生活方式等各异,并随季节性果蔬应市变化明显。
经济发达的工业化国家城市垃圾平均年增长率在2%~5%,个别如韩国高达11%,即总体上高于发展中国家。例如,纽约市日产垃圾达(2.2~2.4)×104t;而埃及首都开罗日产生垃圾仅4 000t。同时,经济发达国家城市垃圾成分的“经济价值”亦相对高于经济欠发达国家,其中许多是可燃物和可回收再利用的成分(表4.1)。尤其现代生活中很多方便式消费品“用后即弃”和纸、塑料等包装材料,就连一些大型耐久消费品如汽车、电冰箱、洗衣机、电视机等,因“过时”换代而废弃的数量越来越多,更换周期愈来愈缩短,如日本、美国的废弃汽车、旧轮胎等堆积如山,成为环境灾害。
表4.1 欧、美及亚洲部分城市垃圾统计(wB/%)
虽然我国城市垃圾人均日产量相对较少,为1.0~1.2kg,但由于人口基数大,城市垃圾年增长率达10%左右,高于工业发达国家。据1991年统计资料,北京日产垃圾1.1×104t;广州市日产垃圾2 860t;香港政府公布日产垃圾1.3×104t;据称,上海日产活垃圾约8 000t,粪便约7 500t。若按此推算,仅10d产生的垃圾就可堆成一座“国际饭店”所占体积的垃圾堆。随着生活水平的不断提高,城市燃料结构的变化和消费结构由节俭型转为废弃型,垃圾成分的变化迅速,尤为明显的是有机质成分上升,炉灰、煤渣等无机成分下降。当然,就目前情况而言,总体上我国城市垃圾成分的“经济价值”偏低。我国城市垃圾的特点是:①无机成分多于有机成分,其比值约为2.5∶1,尤其是能源构成以燃煤为主的城市,垃圾中炉灰竟占到53.93%~69.74%,以燃气为主的城市垃圾中有机质成分由原30.26%~37.67%上升为86.94%~92.6%左右,但是,垃圾人均日产生量降为0.39~0.86kg,由于目前城市垃圾中含无机的煤渣、灰分量大,使同等体积的垃圾比重较大,增加了垃圾运输费用,从另外一个角度看,煤渣灰分多,可大量吸附有机质腐烂浸出液和臭味,燃气城市垃圾缺少了煤渣灰吸附,当有机质多时,显得垃圾特臭;②城市垃圾成分中不可燃成分多于可燃成分,其比值约为20∶1,使垃圾焚烧热值低或达不到燃烧制能的要求,焚烧减容效果差,甚至不能采用焚烧方法处理;③城市垃圾混合收集,使不可堆肥成分多于可堆肥成分,比值约为4∶1,尤其是我国大多数城市垃圾处理工作起步晚,对城市垃圾未进行分类收集预处理,使厨房食物垃圾、生活用品垃圾、商业垃圾、城市清扫垃圾与建筑垃圾,甚至与工业垃圾、人畜粪便、医院垃圾、生物制品厂垃圾等有害垃圾混堆,复合污染危害严重,而且,原处于城市远郊的垃圾堆放场,随着城市面积急剧扩大变成了城市近郊,近年来也与发展中国家趋势一样,发展到向城乡接合部位堆放垃圾的转移态势,“垃圾包围城市”。遥感航片上,上海市已被大大小小500余座垃圾堆包围;1990年以前,北京市三四环路之间,50m3以上的垃圾山有4 500多座,整个市区也几乎被环状的垃圾群所包围。
城市垃圾是一种令人生厌的物质。其特点是有机成分复杂,浓集了许多易腐污染成分,富含氮、硫、磷和水分,甚至病菌、病毒,极易交叉传染各种疾病。这些城市垃圾堆,在厌氧细菌作用下,易产生恶臭物:H2S、氮杂茆、粪臭素等,释放大量CO2、NH3或CH4等有害气体,并边腐烂边溢流有害渗出液,招引鸟虫、滋生蚊蝇,极易引发传染性疾病,加剧了城市生态环境的恶化,十分影响城市环境卫生,有碍优美景观的观瞻,成为现代城市发展的大毒瘤。
4.1.3.4 农业固体废弃物
农业固体废弃物(agricultural solid waste)是泛指农、林、牧、副、渔业生产及其产品粗放型原料加工、屠宰等排出的废物,简称农业垃圾。
主要来源于森林采伐残渣、农业谷物秸秆残渣、果蔬残渣、禽畜粪便、动物病尸、易腐农牧产品及农副产品加工残渣、丢弃物和农药、化肥使用处置不当等。近年来,随着农业科技的进步,密集型农业和技术密集型的家禽、牲畜饲养业迅速发展,需要处理的农业垃圾量也相应增多。据20世纪70年代末资料,美国年产生农业固体废弃物达6.4×108t。另据联合国环规署统计,欧洲共同体国家固体废弃物中近一半的废物来自农业。
由于农业垃圾成分中大量是有机质废物,并含有一定水分,有时还浓集了许多病菌、病毒及寄生虫卵、害虫等,极易腐烂,产生色、臭物质,使土壤环境改变为缺氧的酸性还原环境,极大地降低土壤自净力,使各种病源微生物及鼠蝇孳生,其对生态环境的破坏,直接使土壤中积累了部分有毒、有害物质,使土壤受到污染毒化,进而影响农作物,使其产量、品质下降,另一方面还常常污染水环境,引起链式作用,危害人体健康。
4.1.3.5 放射性固体废弃物
包括天然和人工放射性核素固体废物(radioactive solid waste)。天然放射性固体废物主要来源于铀、钍核素矿山和稀土矿山,某些有色金属矿山的废石、废渣、选矿的尾矿砂。甚至还包括含铀、镭超标的钢渣砖、花岗石建筑、装饰材料等。人工放射性核素固体废物主要为核工业、核动力、核试验和放射医疗、科研实验室的放射性同位素废料及退役核设施等。
提起“放射性辐射”,易让人产生恐怖的联想,谈核色变。事实上,应理智地看到,从地球形成至今的46亿年,在各种环境中一直广泛地存在天然放射性辐射现象。地球上生物进化史业已证明,适量的辐照射非但无害,而且有益于生物,这一点已被核医学放射治疗和农业种子辐照增产、改良品质技术所证实。
国际上用以表示放射性强弱的量称放射性活度,单位为贝可(Bq)。单位质量物质的放射性活度称比活度(Bq/kg)。所谓具有放射性,是指固体废物的放射性比活度(Bq/kg)或浓度(Bq/L或Bq/m3)高于各国规定的限制,有可能产生环境危害。
也就是说,亦应清醒地认识到,过量的辐照射是有害的,其危害就在于当人体受到超量或长期低剂量放射辐照时,通过电离和激发作用,将引起人体细胞组成分子的结构、性质的改变,进而造成机体暂时或永久的各种损伤。一般认为,α射线生物效应较大,但穿透能力小,在体外,不会构成对体内组织威胁,但进入体内危害较大。γ射线穿透能力强,即使体外照射,也能对深部组织造成损伤。β射线作用和能力居于前两者之间。在放射性污染的环境中,人体可能受到来自体外的射线辐照,也可能通过吸入污染空气或摄入半衰期长,与钙、钾的化学性质相似的锶(90Sr)、铯(137Cs)、碘(131I)、碳(14C)污染的食物和水,进而受到体内射线照射,危害机体,严重时可引起遗传变异或癌症。
放射性废物对环境的污染,与一般化学污染物不同,目前采用任何化学、物理或生物的方法都无法有效地破坏这些核素,其所造成的危害要经过一定的潜伏阶段才会显现。不同来源的放射性废物,其组成、性质以及放射性水平常常差别很大,通常无法用肉眼分辨是否属放射性废物,需用专门的仪器检测才会发现。另一方面,一旦发现有危害人体的症状时,常常已到积累晚期。因此,国家对放射性固体废物制定了严格的管理措施,自成体系,进行专门管理。
目前,世界上还没有统一的放射性废物分类方案。我国参照国际一般原则和国际原子能机构规定,结合我国实情,制定了我国放射性固体废物分类的国家标准(GB9133)表4.2。将放射性固体废物首先分为非超铀废物和超铀废物两大类,再将非超铀废物按半衰期的长短分成四类,每一类再按比活度分为低放、中放、高放三个等级。
表4.2 放射性固体废物分类(放射性比活度a/Bq·kg-1)
综上所述,尽管五大类不同来源的固体废弃物的组成、特性各不相同,但对生态地质环境的危害,不良后果则有的是相似、相同的。我国从对固体废弃物管理的需要出发,目前趋向于将固体废弃物分为:工矿固体废弃物、有害固体废弃物、城市垃圾和粪便、其他等四类。其中,工矿固体废弃物系指不具有毒性和危害性的工矿业固体废弃物。有害固体废弃物,国际上有的称危险废弃物(hazardous wastes)。但事实上,由于固体废物种类、性质多样,尤其是近年来,新材料与化学品激增,当它们成为废物进入环境后,其间的复合反应,以及在环境中滞留的长短,危害特征等尚不清楚,并不是“非此即彼”那么精确,截然清晰,甚至危害性质界定、操作十分困难,在有害废弃物与非有害废弃物之间并无明显界线,即具有不易确定性。因此,国际上至今对这一问题提法不同,有些国家是按对人类健康的危害下定义,另一些国家则强调还包括对环境的危害。从总体上看,所谓危险废弃物,一般泛指除放射性废物以外,具有毒性、易燃性、反应性、腐蚀性、爆炸性、传染性,因而可能对人类健康和生态环境产生危害的固体废弃物。虽然全世界年产生危险废物仅占固体废物总量的3%左右,约3.4×108t,其中大多数为化学工业固体废物,可在其产生、运输、贮存,乃至处置的各个环节过程,通过各种渠道危害生态环境与人体健康,危害极大。危险废物总量中,美国约占80%,年产生量约2.4×108t,日本约2 400×104t,欧共体国家约(2 500~3 500)×104t。在工业发达国家,危险废物已成为敏感的“政治废物”,为转嫁洋垃圾危机,尤其是危险废弃物,近年来以各种方式越境转移,输出到包括我国在内的发展中国家,危害他国。这已经引起世界许多国家的关注和抵制。为加强对危险废物越境转移的控制,1989年3月,联合国环境规划署在瑞士巴塞尔举行大会,通过了《控制危险废物越境转移及其处置的巴塞尔公约》。