一种可以促进过氧化苯甲酰分解的促进剂,简称DHT,具体是什么东西?
中文名称:
N,N-二异丙醇对甲苯胺
N,N-二羟丙基对甲苯胺
云石胶促进剂 DHT
英文名称:diisopropanol-para-toliidine
使用原理:促进效果比较好的带有推电子基团苯环的芳香族胺类, 如N,N-二甲基苯胺(DMA)、N,N-二甲基对甲苯胺(DMT ) , N,N-betaN,N-二羟乙基对甲苯胺(DHET)等叔胺。促进剂能使氧化剂如过氧化苯甲酰(BPO)迅速分解, 缩短其半衰期tl/2 , 提高聚合速度。本促进
剂在室温下是固体, 完全没有胺类所特有的不愉快臭味, 几乎不会变色, 因此适于一般高聚物的聚合反应。
用途: N,N-二异丙醇对甲苯胺化学性能稳定、无臭味、无刺激性、毒性低、贮运方便。它同有机过氧化物组成氧化还原引发体系,具
有活性高、与单体互溶性好,适用于丙烯酸醋类或其他烯烃类单体的室温固化,是一种较有发展前途的新型聚合促进剂。
对羟基苯甲酸的聚合反应,将对甲苯胺用乙酸酐处理转变为相应的酰胺。对甲基乙酰苯胺中的甲基被高锰酸钾氧化为相应的羧基。氧化过程中,紫色的高锰酸盐被还原成棕色的二氧化锰沉淀。鉴于溶液中有氢氧根离子生成故要加入少量的硫酸镁作为缓冲剂,使溶液碱性不致变得太强而使酰胺基发生水解。反应产物是羧酸盐,经酸化后可使生成的羧酸从溶液中析出。
微波是一种波长小于10cm的电磁波,具有一定的穿透性。具有极性分子结构或极性基团的材料吸收微波后,分子被激发,互相摩擦产生大量热量,使材料内部温度迅速升高。MMA为极性分子,容易吸收微波而最终聚合,因此,用微波进行义齿基托树脂热处理是一种快速的方法。
微波热处理需要用特制的玻璃钢型盒,因为金属型盒对微波具有屏蔽作用。微波热处理过程是:将填好胶的型盒用特制的玻璃钢螺钉加压固定,然后放入微波炉内进行微波照射。一般先照射义齿组织面,然后反转型盒,照射另一面,以550W微波炉为例,每面照射1.5-2.0min。
采用微波热处理的基托树脂,其力学性能与常规水浴热处理法基本相同。微波热处理法具有处理时间短、速度快、所制基托组织面的适合性好、固化后基托树脂与石膏分离效果好等优点。
二、室温化学固化型义齿基托树脂
室温化学固化型义齿基托树脂(room temperature curing denture base resin)又称自凝型义齿基托树脂,简称自凝树脂(self-curing resin)。所谓“自凝”,乃是相对加热固化而言的,是指在室温下能够固化,不必额外加热的意思。 、
(一)组成
自凝树脂是由粉剂和液剂两部分所组成。粉剂又称自凝牙托粉,主要是PMMA均聚粉或共聚粉,还含有少量的引发剂BPO和着色剂(如镉红、钛白粉)。液剂又称自凝牙托水,主要是MMA,还含有少量的促进剂、阻聚剂及紫外线吸收剂。
自凝树脂所用的引发剂一般为过氧化苯甲酰(BPO),其含量一般为聚合粉重量的1%左右。促进剂的种类较多,主要有两类,一类是有机叔胺,另一类为对甲亚磺酸盐。
有机叔胺促进剂主要有N、N.二甲基对甲苯胺(DMT)、N、N一二羟乙基对甲基胺(DHET)。促进剂的含量一般为牙托水重量的0.5%~0.7%。
常用的对甲苯亚磺酸盐有对甲苯亚磺酸(TSA)、对甲苯亚磺酸钠盐(TSS)和钾盐(TSP),用此类促进剂聚合的树脂,色泽稳定性好。
(二)聚合原理
自凝树脂的聚合过程与热固化型树脂相似,所不同的是链引发阶段产生自由基的方式不同。BPO需在60~800C温度下才能分解出自由基,欲使其在常温下分出自由基,需要叔胺作为促进剂。BPO与叔胺在常温下就能发生剧烈的氧化还原反应,释放出自由基, 所释放的自由基可以打开MMA分子结构中的双键,引发其聚合。
(三)性能
由于自凝树脂是在常温下通过氧化还原反应引发聚合,快速固化而成,比热固化型树脂,分子量小、残留单体量多、机械强度低、容易产生气泡和变色等缺点。
1.平均分子量 自凝牙托粉的分子量低,约为8万~14万,而且MMA经氧化还原引发体系引发聚合后所形成的聚合物的平均分子量也较热固化型的低,聚合物分子为短链状结构。因此,自凝树脂固化后的平均分子量低于热固化型树脂。
2.残余单体(residual monomer) 与热固化型相比,自凝树脂的残余单体含量较多,而且残余单体量与聚合所用促进剂的种类有关。
残余单体在基托中起着增塑剂的作用,既降低了强度,又加剧了氧化变色,还可能导致基托扭曲变形。
3.聚合收缩(polymerization shrinkage) 线性收缩约为0.43%,与热固化型树脂相近,它的尺寸准确性与形态稳定性近似于热固化型树脂。
4.色泽稳定性(color stability) 自凝树脂的颜色稳定性不如热固化型树脂,其原因主要是树脂中残留的促进剂叔胺和阻聚剂的继续氧化,变色的程度与促生剂和阻聚剂的种类及用量有关。
5.聚合热 自凝树脂在聚合反应过程中伴随有反应热的产生,产热量除与塑料体积大小有关外,还与促进剂或引发剂含量多少有直接关系。促进剂含量高,则反应热也多。高反应热反过来也促使聚合的进行。反应热的大小与聚合时的环境温度也有关系。在一般情况下,环境温度高,反应热愈大,固化愈快。
6.机械性能 自凝树脂的机械性能整体上不如热固化型树脂,韧性较差,脆性较大,刚性较好。采用MMA—EA—MA三元共聚粉可以改善自凝树脂的韧性,综合性能也有所改善。
(四)应用
自凝树脂主要用于制作正畸活动矫治器、腭护板、牙周夹板、个别托盘、义齿重衬及暂时冠桥等,也可用来制作简单义齿的急件。
自凝树脂应用时,一般先将牙托水加入调杯内,然后再加牙托粉于杯内,粉液比为2:1(重量比)或5:3(容量比),稍加调和后,加盖放置。待调和物呈稀糊时,可用糊塑法直接在湿模型上塑形,树脂固化前可适当加压。初步固化后连同模型一起置于60℃热水浸泡30分钟,以促进固化完全,冷却后适当调磨咬合、打磨、抛光。
自凝树脂调和后,所允许的操作时间是有限的。一般在糊状期塑形,此期流动性好,不粘丝、不粘器具,容易塑形。若塑形过早,调和物流动性太大,不易塑形;若塑形过迟,调和物已进入丝状期,易粘器具,不便操作,也容易带入气泡。
自凝树脂在口腔内直接重衬或修补时,单体会使患者感到辛辣,而聚合时所放出的热甚至会灼伤粘膜,特别是大面积重衬时尤应注意。在接触自凝树脂的软组织表面最好事先涂布液体石蜡或甘油,可起到一定的保护作用。此外,自凝树脂在个别情况下有过敏现象,症状为接触处有蚁走感、发痒、灼热及刺痛等感觉,局部可见有丘疹、水肿等症状。
自由基引发剂(initiators for free radical polymerization)的分类,有多种分类方法,按引发剂的分子结构,可以分为偶氮类、过氧类和氧化还原类。也可以按照其溶解性能分为水溶性引发剂(如无机类的过硫酸盐、过氧化氢、水溶偶氮引发剂等)和油溶性(溶于单体或有机溶剂)的有机类引发剂。可以按照引发剂的分解方式将引发剂分为热分解型和氧化还原分解型两类。或者按照引发剂的使用温度范围,分为:①高温(100℃以上)类,如烷基过氧化物、烷基过氧化氢物、过氧化酯等;②中温 (40~100℃)类,如偶氮二异丁腈、过氧化二酰、过硫酸盐等;③较低温(0~40℃)类,如氧化还原引发体系。因此应根据聚合反应的温度要求来选择引发剂。如果高温引发剂用在中温范围聚合,则分解速率过低,而使聚合时间延长;如果中温引发剂用于高温范围聚合,则分解速率过快,引发剂过早消耗,在低聚合转化率阶段就停止反应。
偶氮引发剂
近些年来,开发出水溶性偶氮类引发剂,这种水溶性引发剂普遍适用于高分子合成的水溶液聚合与乳液聚合中。与一般类型的偶氮引发剂相比,水溶性偶氮引发剂引发效率高,产品的相对分子质量相对比较高、水溶性好、且残留体少。水溶性偶氮引发剂是将原来的油溶性的有机引发剂(如偶氮二异丁腈)转变成为水溶性的,扩大了使用范围,若带有端基的水溶性引发剂,还可以用于制备遥爪聚合物。将水溶性偶氮引发剂引发丙烯酰胺聚合,聚合温度大约在35~90℃,一般温度在40℃左右就可以,聚合时间平均在4h,得到的聚丙烯酰胺的相对分子质量大约为1400~1800万之间,产品的溶解性好。在阳离子乳液及功能高分子的制备中也有不俗的表现。
氧化还原引发剂
过氧化物和胺组成的氧化还原引发体系及铈(Ⅳ)离子氧化还原引发体系,一直是被人们关注的热门问题。含胺氧化还原引发体系包括以下3种。一是由有机过氧化物和芳叔胺组成的有机氧化还原体系,以过氧化二苯甲酰(BPO)—N,N-二甲苯胺(DMA)和BPO—N,N-二甲基—对甲苯胺(DMT)为代表,主要用于医用高分子的齿科自凝胶树脂与骨水泥。二是由有机过氧化氢(如,异丙苯过氧化氢)与DMT组成的有机氧化还原体系,主要用于厌氧胶。三是由水溶性的过硫酸盐与脂肪胺组成的体系,主要用于水溶性聚合、乳液聚合。过氧化二苯甲酰(BPO)和N,N-二甲基苯胺(DMA)所组成的氧化还原体系引入到甲基丙烯酸甲酯和丙烯酸丁酯的复合超浓乳液共聚合中,以十二烷基硫酸钠(SDS)和十六烷醇(HD)作为复合乳化剂,制得了分散相占83%以上的稳定性很好的超浓乳液,实现了超浓乳液的低温引发聚合。
双官能度及多官能度引发剂
双官能度引发剂是指在同一个引发剂分子中含有两个活性基团的化合物,这些基团可以是过氧键、过酯键、过酰键或偶氮键,它们可以分解产生自由基引发聚合反应。分为对称型(即两个活性基团活性相同,如(I)和不对称型(即两个活性基团活性不相同)。
多官能度引发剂,是指一个引发剂分子中含有3个以上活性基团的化合物,这些活性基团可以通过分解产生自由基引发聚合反应。此外人们又合成出一个分子中有数目众多的多官能度引发剂,用此类引发剂一般来合成超支化聚合物。
常用的聚苯胺合成方法有化学氧化合成与电化学合成。化学氧化合成法适宜大批量合成聚苯胺,易于进行工业化生产;电化学合成法适宜小批量合成特种性能聚苯胺,多用于科学研究。 化学氧化法通常是在酸性介质中,采用水溶性引发剂引发单体发生氧化聚合。合成主要受反应介质酸种类及浓度、氧化剂种类及浓度、苯胺单体浓度、反应温度和反应时间等的影响。所用的引发剂主要有(NH4)2SO8、K2Cr2O7、KIO3、FeCl3、FeCl4、H2O2、Ce(SO4)2、MnO2、BPO(过氧化苯甲酰),其中(NH4)2SO8由于不含金属离子,氧化能力强,后处理方便,是最常用的氧化剂。也有用(NH4)2S2O8和碳酸酯类过氧化物组成复合氧化剂。而以Fe2+为催化剂和H2O2为氧化剂可合成高溶解性的聚苯胺。
聚苯胺聚合反应历程图册参考资料。
聚苯胺在酸性介质中合成的同时可能被掺杂。盐酸掺杂虽然可使聚苯胺获得较高的导电率,但由于HCl易挥发,容易发生去掺杂;而用H2SO4、HClO4等非挥发性的质子酸掺杂时,在真空干燥下它们会残留在聚苯胺的表面,影响产品的质量。从应用的角度考虑,有机质子酸掺杂的聚苯胺具有更广阔的应用前景,十二烷基磺酸、十二烷基苯磺酸、樟脑磺酸、萘磺酸以及2,4-二硝基萘酚-7-磺酸(NONSA)等作为酸性介质的同时又可作为掺杂剂,可获得功能质子酸掺杂的聚合物。这是提高掺杂态聚苯胺稳定性和溶解性的重要手段之一。
化学氧化法所得到的高分子溶液可通过流涎法来制备大面积自撑膜,适用于制备大构件元件和进行结构剪裁,并可通过选用合适的氧化还原剂来调节氧化态。常用的化学聚合方法主要有溶液聚合、乳液聚合、微乳液聚合、模板聚合和酶催化法等。不使用模板的方法也可以叫自组装法(self-assembled method, SAM)。
溶液聚合
通常采用盐酸、硫酸或高氯酸水溶液为介质,将引发剂溶液缓慢滴入单体溶液中引发聚合,产物易于纯化;缺点是聚合过程影响因素多,分子量分布较宽,所得产品在导电率、溶解性以及熔融加工性等方面均有缺陷。一般溶液法合成路线为:取定量的苯胺单体滴入盐酸稀溶液,再向其中缓慢滴入引发剂,如要求较高质量可通N2保护,低温搅拌,反应结束后直接过滤、洗涤、干燥后即得聚苯胺产品。
非均相聚合
非均相聚合通常是先将反应单体分散在水溶液中并利用机械搅拌或超声波振荡等方法,使单体形成具有一定直径的液滴,再利用表面活性剂改性,使形成的液滴能稳定悬浮分散于溶液中。链反应引发剂通常溶解于连续相中,而聚合反应则被限制在液滴中进行,从而实现对产物尺寸和形貌的控制。非均相聚合法可分为乳液聚合、胶束聚合、悬浮聚合、分散聚合和溶胶-凝胶聚合等。根据乳液滴或悬浮微粒的尺寸,又可分为乳液聚合、微乳液聚合、悬浮聚合和微悬浮聚合。
乳液聚合
乳液聚合能获得较大分子量,聚合过程中使用较低的氧化剂(引发剂)用量,优点在于聚合热有效分散于水相,避免局部过热,体系黏度变化小,而且其溶解性、分子量、热稳定性及结晶形态方面的性能都明显优于溶液聚合;但乳液聚合体系中乳化剂的浓度大,不易完全去除,给产物的纯化不利,并且需要大量的有机溶剂和沉淀剂,制备成本较高。经典乳液聚合法为:采用十二烷基苯磺酸(DBSA)作为乳化剂,同时加入水、二甲苯及苯胺,加入过硫酸铵引发反应,反应一定时间加入丙酮使PAn/DBSA 沉淀,洗涤、干燥即可得到聚苯胺产物。多用十二烷基苯磺酸是因为它在反应体系中既是乳化剂又能提供酸性条件,还会以掺杂酸进入聚苯胺分子。
微乳液聚合
微乳液是一种外观透明或半透明、低黏度的热力学稳定体系,其分散液滴小于100nm。可分成反相微乳液(W/O)、双连续相微乳液和正相微乳液(O/W,其实正向乳液聚合就是一般意义上的乳液聚合,但因为在微乳液中反相聚合用的较多,正相反而显得另类)。尤其是反相微乳液聚合已经越来越多地用于制备聚苯胺纳米粒子,其粒径可达10nm,而且分布较均一。反相微乳液聚合中的水油比是制备的关键的因素,能影响到粒子的大小和形态。一般随水油比的增大,纳米粒子直径逐渐增大。
微乳液聚合被认为是最理想的聚苯胺合成方法之一。该法反应条件容易控制、产物粒径均匀,而且因其粒径都在纳米级别,从而使产物具有了纳米粒子的特性。所得聚苯胺产物的电导率、产率和溶解性均有提高,且其链结构规整性好、结晶度高。
反相微乳液聚合制备的聚苯胺粒径小,导电性和结晶度也较好。但有时其粒子形状会发生从球形到针形乃至薄片形的转化。合成聚苯胺方法为:向HCl溶液中加入过硫酸铵、SDBA、丁醇(助乳化剂),这样的混合液一经搅拌很容易配成透明的微乳液,接着往上述乳液中滴加一定量的苯胺单体,在室温下持续搅拌反应24 h,破乳即得聚苯胺。
与反相微乳液不同,利用O/W微乳液(正相微乳液)制备纳米粒子的例子并不多。这种方法可以得到分散在水相中的憎水高分子纳米颗粒,其优点是快速聚合和可以形成分子量很高的聚合物。在O/W微乳液体系中乳化剂及助乳化剂的浓度很高,水溶性引发剂存在于水连续相中,苯胺单体浓度很低,主要被增溶于微乳液液滴内,极少量存在于水连续相中。在微乳液聚合过程中,溶解于水中的活性基团会迅速被胶束中的单体捕捉而引发聚合。因胶束数量很大,故聚合反应速率很快。典型的聚苯胺正相微乳液聚合过程为:将苯胺、十二烷基硫酸钠和盐酸搅拌混合,滴加APS溶液,整个聚合过程应控制在20℃,反应持续12 h后,破乳即可。有报道电导率达9.1S/cm。
模板聚合
具有特殊形貌与功能的聚苯胺的设计与合成一直是聚苯胺研究的热点之一。所采用的主要是模板聚合法。这也是最有效、最简便的制备纳米结构的方法之一。在反应体系中加入沸石、多孔膜、多孔氧化铝膜等作为模板,使聚合反应发生在模板孔洞中实现结构有序排列的方法叫做硬模板合成,它可以通过调节模板孔洞尺寸来改变产物的直径及长度,可控性较好,但由于需要分离模板以及在分离时可能会破坏高分子结构或形成额外的共聚结构而限制了其应用。
采用模板法合成聚苯胺纳米材料的一般步骤为:先将模板(多孔氧化铝膜、沸石和多孔膜等)浸入溶有苯胺单体的酸性溶液中,再通过氧化剂(APS和KPS等)、电极电位或其他方式引发聚合链反应。反应进行一段时间后,模板的孔径中会生成直径略小的聚苯胺纳米材料。模板法的优点是产物的形貌和尺寸易于控制,有效地防止了分子链间的相互作用、交联以及结构缺陷的产生。用做聚苯胺合成的模板主要是胶束和反胶束。胶束聚合多采用阴离子型表面活性剂,尤其是能自掺杂的表面活性剂,但产品粒度不均,导电率也相对较低。研究表明反应物在胶束中的位置是影响反应速率、选择性以及产率的重要因素之一,而苯胺的聚合发生在胶束/水的界面上,生成的聚苯胺颗粒以静电斥力吸附或嵌入表面活性剂分子而得以稳定。
模板聚合的优势之一在于有可能合成结构单一的聚苯胺,即所谓的模板导向聚合,在反应体系中加入聚阴离子电解质,在反应过程中,模板在促使苯胺单体对位取代以保证获得头-尾聚合的同时,为聚苯胺的掺杂提供补偿离子和使聚苯胺具有水溶性。这也叫做软模板合成或自组装方法。用作软模板的有表面活性剂和有机掺杂剂,其原理是可在水溶液中自组装成具有特定形貌的有序结构,但是该方法在需要使用结构相对复杂、体积相对庞大的特殊功能性掺杂剂,可能会影响产物的结构及性能,且不利于大规模的合成。
有一个较新的趋势是使用酶,主要用过氧化氢酶(辣根过氧化氢酶,horseradish peroxidase,HRP)来催化过氧化氢的分解,利用过氧化氢氧化使苯胺聚合。但由于聚合是在水体系中进行,而聚苯胺不溶于水,因此很快会从水中析出,导致仅能得到分子量很低的寡聚体。其他可作为酶催化的模板有聚苯乙烯磺酸钠(SPS)和聚乙烯磺酸钠(PVS)等。
模板合成麻烦之处在于需要用碱液等试剂移除模板,模板的溶解会导致孔径中的纳米材料因失去支撑而团聚,而且碱性环境会导致聚苯胺解掺杂,改变产物的原有形貌。有人尝试选取萘磺酸(NSA)作为模板,因为NSA在作为模板的同时又作为掺杂剂进入反应产物中,并不需要在反应结束后除去。还有人使用阳极氧化铝(AAO)作为模板,在其孔隙中合成的聚苯胺纳米纤维具有良好的取向性、规整度和力学性能。这主要是由于AAO的孔隙是定位取向的,聚苯胺沿着孔壁生成所致。
界面聚合
2003年首先采用此法合成了聚苯胺纳米纤维。界面聚合(interfacial polymerization)利用油/水界面将苯胺与氧化剂分离,苯胺单体溶解于有机相中(如CCl4,CS2,苯和甲苯等),氧化剂和掺杂酸(如:HCl,HNO3和H2SO4等)溶解于水相中,二者在相界面接触并发生氧化反应。随着反应的进行,在相界面处,反应物浓度不断降低,促使未反应的苯胺和氧化剂由于浓度差而不断扩散至相界面,从而保证反应的连续进行,直至反应物消耗完毕。两相界面既是苯胺与氧化剂的接触面又是反应面,从而控制了聚合反应发生的剧烈程度,避免了苯胺的过度氧化和二次生长,有利于规整形貌的聚苯胺的合成。界面聚合的优点包括:产物的合成和纯化较为简便,无需移除模板;产物形貌规整,一致性很高;聚合反应的规模可控,重现性好。
在界面聚合过程中,通过加入一定量的表面活性剂,可以控制合成的聚苯胺纤维的直径,而加入乳化剂可有效减少有机溶剂的用量,提高/油/水两相界面面积,缩短聚合反应时间。
有人把界面聚合和传统化学聚合相结合,提出了直接混合法(rapid mixing method, RMM)。反应在室温下进行,且不控制反应温度。以掺杂酸溶液作为溶剂,将苯胺和氧化剂分别配成溶液后在室温下迅速混合,静置反应一定时间,反应液经纯化处理后,即可得到产物。
种子聚合
种子聚合法是以一定形貌的晶种作为结构引导剂,使得单体在聚合的过程中,PAn 形貌的形成朝着晶种的形貌生长。在晶种法中,以纤维状聚苯胺/无机NCs为例,少量的无机纳米纤维如单层碳纳米管束、V2O5的纳米纤维等作为种子,采用种子聚合法合成了PAn纳米复合纤维。核壳粒子的形貌由晶种粒子的形貌和HCl与苯胺单体的比决定;在强酸性介质中用亲水晶种颗粒种子聚合苯胺制备了覆盆子结构的颗粒,而在中性介质中用疏水晶种颗粒种子聚合了表面平滑的颗粒。 在电场作用下使电解液中的单体在惰性电极表面发生氧化聚合,其优点是能直接获得与电极基体结合力较强的高分子薄膜,并可通过电位控制聚合物的性质,也可直接进行原位电学或光学测定。在含苯胺的电解质溶液中,选择适当的电化学条件,使苯胺在阳极上发生氧化聚合反应,生成黏附或沉积于于电极表面的聚苯胺薄膜或粉末。操作过程为:氨与氢氟酸反应制得电解质溶液,以铂丝为对电极,铂微盘电极为工作电极,Cu/CuF2为参比电极,在含电解质和苯胺的电解池中,以循环伏安法进行电化学聚合,反应一段时间后,聚苯胺便吸附在电极上,形成薄膜。与化学聚合法相比,电化学方法操作简便,聚合和掺杂同时进行;可通过改变聚合电势和电量控制聚苯胺膜的氧化态和厚度;所得产物无需分离步骤。
不同环境下电化学聚合机理图册参考资料。
电化学法包括循环伏安法、恒电流法、恒电势法、脉冲电流法等。其中,循环伏安法制得的聚苯胺膜质地均匀、导电性良好、氧化还原可逆性优良、膜厚易控制以及膜与基体结合牢固、可获得自支撑膜,应用最为广泛。聚合体系多为三电极系统,主要由电解液、工作电极、对电极、参比电极和电化学工作站组成。常用的工作电极为铂片、阳极铝氧化物和铟锡氧化物玻璃(ITO)等,对电极多采用铂电极,而参比电极为饱和甘汞电极或标准Ag/AgCl电极等。电极材料、电极电位、电解质溶液的pH值及其种类对苯胺的聚合都有一定的影响。其中,电解质阴离子对苯胺阳极聚合速度有较大影响,聚合速度顺序为H2SO4>H3PO4>HClO4,但所得聚苯胺结构基本相似。
苯胺在电化学聚合时颜色根据外界有所变化,在酸性溶液中是蓝色的,而在碱性溶液中阳极氧化时生成深黄色的物质。
电化学聚合中反应选择性差,因为单体的氧化电位一般比所得高分子的可逆氧化还原电位高,因此在聚合过程中可能出现聚合物链的过氧化;单体聚合活性中心的选择性较差,几乎所有电化学聚合都存在不同程度的交联;反应完成后从电极表面转移聚苯胺的过程有可能导致产物形貌发生变化。此外,电化学聚合受电极面积制约,不利于大规模生产,所得产物的可加工性差、批量小。 辐射合成法是通过光能或其他射线引发苯胺单体聚合。该法合成的聚苯胺形貌受辐射源的波长、照射面积和辐射形状等因素的影响。采用紫外辐射时易得到球型形貌,而采用可见光辐射时产物则倾向于纤维形貌。
声化学聚合法与化学氧化法类似,区别在于声化学聚合法在滴加APS到ANI溶液中引发链反应时,利用超声波振荡使混合溶液充分分散并发生聚合反应。 由于苯胺的化学聚合速度很快,很难跟踪和分离中间产物,而电化学聚合相对较易控制和跟踪观察,所以聚苯胺早期机理的研究主要建立在电化学的基础上。一般认为苯胺的聚合是一种介于典型逐步增长与典型自由基链增长之间的聚合反应。由于苯胺的氧化电位远高于二聚体,苯胺单体氧化形成二聚体是聚合反应的控制步骤;二聚体形成后,立即氧化成阳离子自由基,进一步氧化脱氢芳构化而生成三聚体;这样重复亲电取代-芳构化过程,即可使链增长持续进行。不过有人提出苯胺氧化到二聚体的形成并不是聚合反应中的最慢步骤,只是表现出需要最高的电化学氧化电位。速率的决定步骤是与体系平衡电位由0.40V上升到0.78V的聚合阶段相关。
Nicolas-Debarnot 提出的苯胺化学聚合过程图册参考资料。
有人认为苯胺氧化聚合是按类似于缩聚反应的历程进行,即各种阳离子自由基间缩合形成聚合物。首先苯胺氮原子失去一个电子形成自由基阳离子,与pH值大小无关;这是速率决定步骤,可通过氧化剂来加速,随后的反应便是自动加速的。阳离子自由基存在三种共振形式,其中形式取代基诱导效应最强而位阻最弱,因此反应性最强;接着自由基阳离子在酸性介质中发生“头-尾”偶合反应,从而形成二聚体,二聚体氧化形成新的自由基阳离子,再与单体阳离子自由基或二聚体阳离子自由基反应形成三聚体或四聚体;继续进行缩合反应形成聚合物。
酸性溶液中制得的聚苯胺一般为墨绿色,具有较高的导电性、电化学活性和稳定性。研究表明苯胺在酸性溶液中的聚合是通过头-尾偶合,即通过N原子和芳环上的C-4位的碳原子间的偶合,从而形成分子长链。而一旦反应中间体被氧化,则整个聚合反应停止。
苯胺在碱性溶液中阳极氧化时生成深黄色的物质。苯胺在碱性溶液中氧化时生成两种可溶性中间物,其氧化机理可能为形成的自由基在碱性溶液中不稳定,很容易失去一个质子形成新自由基,后者在 1.1 V左右进一步氧化带正电荷的可溶性中间物并在电极上发生聚合,还有少部分在传递过程中分解。 反应温度对聚苯胺的电导率影响不是很大,在低温下(冰水浴)聚合有利于提高聚苯胺的分子量并获得分子量分布较窄的产物。在过硫酸铵体系中,在一定温度范围内,随着反应体系温度升高,产物产率增加。不过苯胺聚合是放热反应,且聚合过程有一个自加速过程。如果单体浓度过高会发生暴聚。
在一定范围内,随着氧化剂用量的增加,高分子产率和电导率也增加。当氧化剂用量过多时,体系活性中心相对较多,不利于生成高分子量的聚苯胺,且聚苯胺的过氧化程度增加,电导率下降。
苯胺在HCl,HBr,H2SO4,HClO4,HNO3,CH3COOH,HBF4及对甲苯磺酸等介质中聚合都能得到聚苯胺,而在H2SO4,HCl,HClO4体系中可得到高电导率的聚苯胺,在HNO3,CH3COOH体系中所得到的聚苯胺为绝缘体。非挥发性的质子酸如H2SO4,HClO4最终会残留在聚苯胺的表面,影响产品质量,最常用的介质酸是HCl。质子酸在苯胺聚合过程中的主要作用是提供质子,并保证聚合体系有足够酸度的作用,使反应按1,4-偶联方式发生。只有在适当的酸度条件下,苯胺的聚合才按1,4-偶联方式发生。酸度过低,聚合按头-尾和头-头两种方式相连,得到大量偶氮副产物。当酸度过高时,又会发生芳环上的取代反应使电导率下降。当单体浓度为0.5mol.L-1时,最佳酸浓度范围为1.0~2.0mol.L-1。
苯甲胺结构式如下图:
苯甲胺分子式是C7H9N,带一个苯环,无色液体,相对密度0.981.3,折射率1.5401与水、乙醇及乙醚混溶。具碱性,能吸收二氧化碳,熔点:-30℃。
扩展资料
苯甲胺用于微结晶分析中测定钼酸盐,钒酸盐、钨酸盐、钛、钴、铈、镧、镨和钕的沉淀剂。用作染料、医药及聚合物的中间体。
苯甲胺的碱性比对甲苯胺的碱性强。因为前者是脂肪胺,后者是芳香胺,脂肪胺的碱性比芳香胺的强。
参考资料来源:
百度百科-苯甲胺
百度百科-结构式
和辅促进剂(II) 是式(II-1) 或(II-2) 的化合物,
其中各R1 和R2 分别彼此独立地为C1- 或C2- 烷基,C1-C3- 羟烷基,或者单或多乙氧基化
的或丙氧基化的C1-C3- 羟烷基,且所述的摩尔比(I) ∶ (II) 介于1 ∶ 1 和5 ∶ 1 之间。
2. 根据权利要求1 的促进剂混合物,其特征在于,所述的主促进剂(I) 为N,N- 二(2- 羟
乙基)- 对甲苯胺,N,N- 二(2- 羟丙基)- 对甲苯胺或其乙氧基化或丙氧基化的衍生物。
3. 根据权利要求1 或2 的促进剂混合物,其特征在于,所述的辅促进剂(II) 选自N,
N- 二乙基苯胺、N,N- 二(2- 羟乙基)- 苯胺、N- 乙基-N- 羟乙基苯胺、N,N- 二(2- 羟乙
基)- 间甲苯胺或N,N- 二(2- 羟丙基)- 间甲苯胺。
4. 根据权利要求3 的促进剂混合物,其特征在于,所述的主促进剂(I) 为N,N- 二(2- 羟
丙基)- 对甲苯胺和辅促进剂(II) 为N,N- 二(2- 羟乙基)- 间甲苯胺。
5. 根据前述权利要求之一的促进剂混合物,其特征在于,所述的摩尔比(I) ∶ (II) 为
3 ∶ 1。
6. 树脂混合物,其包括至少一种可自由基聚合的化合物,用于固化剂的促进剂以及任
选地至少一种抑制剂和至少一种反应性稀释剂,其特征在于,所述的促进剂是根据权利要
求1 至5 之一的促进剂混合物。
7. 根据权利要求6 的树脂混合物,其特征在于,所述的促进剂为根据权利要求4 或5 的
促进剂混合物。