混凝土、砂浆试模是用来制作测试混凝土和砂浆力学性能及其长期性、耐久性试验用试件的模具。(一)技术要求:1.1混凝土、砂浆试模由铸铁或钢制成,内表面应机械加工平整光滑,不应有任何砂眼或缺陷。1.2试模内表面的
1 混凝土搅拌站(楼)分类 GB/T10171-88
2 混凝土搅拌站(楼)技术条件 GB/T10172-88
3 预拌混凝土 GB/T14902-2003
4 水泥胶砂强度检验方法(ISO法) GB/T17671-1999
5 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T18046-2000
6 水泥胶砂流动度测定方法 GB/T2419-2005
7 普通混凝土拌合物性能试验方法标准 GB/T50080-2002
8 普通混凝土力学性能试验方法标准 GB/T50081-2002
9 混凝土外加剂匀质性试验方法 GB/T8077-2000
10 水泥取样方法 GB12573-1990
11 复合硅酸盐水泥 GB12958-1999
12 矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥 GB1344-1999
13 水泥细度检验方法(筛析法) GB1345-2005
14 水泥标准稠度用水量、凝结时间、安定性检验方法 GB1346-2001
15 用于水泥和混凝土中的粉煤灰 GB/T1596-2005
16 硅酸盐水泥、普通硅酸盐水泥 GB175-1999
17 混凝土外加剂应用技术规范 GB50119-2003
18 混凝土质量控制标准 GB50164-92
19 混凝土结构工程施工质量验收规范 GB50204-2002
20 混凝土外加剂定义、分类、命名与术语 GB8075-2005
21 混凝土外加剂 GB8076-1997
22 混凝土强度检验评定标准 GBJ107-1987
23 粉煤灰混凝土应用技术规范 GBJ146-90
24 普通混凝土长期性能和耐久性能试验方法 GBJ82-1985
25 水泥胶砂试模 JC/T726-1997
26 行星式水泥胶砂搅拌机 JC/T681-1997
27 水泥胶砂试体成型振实台 JC/T682-1997
28 40mmX40mm水泥抗压夹具 JC/T683-1997
29 混凝土泵送剂 JC473-2001
30 混凝土膨胀剂 JC476-2001
31 混凝土泵送施工技术规程 JGJ/T10-95
32 回弹法检测混凝土抗压强度技术规程 JGJ/T23-2001
33 粉煤灰在混凝土和砂浆中应用技术规程 JGJ28-86
34 普通混凝土用砂质量标准及检验方法 JGJ52-1992
35 普通混凝土用碎石或卵石质量标准及检验方法 JGJ53-1992
36 普通混凝土配合比设计规程 JGJ55-2000
37 混凝土减水剂质量标准和试验方法 JGJ56-1984
38 混凝土拌合用水标准 JGJ63-89
39 混凝土矿物外加剂应用技术规程 DB/T1013-2004
40 混凝土质量控制标准 GB50164-92
41 市政道路工程质量检验评定标准 CJJ1-90
42 市政桥梁工程质量检验评定标准 CJJ2-90
43 市政排水管渠工程质量检验评定标准 CJJ3-90
44 市政工程质量检验评定标准(城市防洪工程) CJJ9-85
45 特细砂混凝土配制及应用规程 BJG19-65
46 高层建筑混凝土结构技术规程 JGJ3-2002
47 工业与民用建筑灌注桩基础设计与施工规程 JGJ4-80
48 混凝土泵送施工技术规程 JGJ/T10-95
49 早期推定混凝土强度试验方法 JGJ15-83
50 回弹法检测混凝土抗压强度技术规程 JGJ/T23-2001
51 粉煤灰在混凝土和砂浆中应用技术规程 JGJ28-86
52 木质素磺酸钙减水剂在混凝土中使用的技术规定 JGJ54-79
53 混凝土拌合用水标准 JGJ63-89
54 混凝土输送管型式与尺寸 JJ83-91
55 超声回弹综合法检测混凝土强度技术规程 CECS02:88
56 钻芯法检测混凝土强度技术规程 CECS03:88
57 钢纤维混凝土试验方法 CECS13:89
58 钢纤维混凝土结构设计与施工规程 CECS38:92
59 混凝土及预制混凝土构件质量控制规程 CECS40:92
60 混凝土碱含量限值标准 CECS53:93
61 混凝土搅拌站(楼)技术条件 GB/T10172-88
62 预拌混凝土 GB14902-94
63 钢纤维混凝土 JG/T3064-1999
63 检验和校准实验室能力的通用要求 GB/T15481-2000
64 利用实验室间比对的能力验证 第1部分:能力验证计划的建立和运作 GB/T154831-1999
65 利用实验室间比对的能力验证 第2部分:实验室认可机构对能力验证计划的选择和使用 GB/T154832-1999
66 水泥的命名、定义和术语 GB/T4131-1997
67 通用水泥质量等级(国家建筑材料工业局标准) JC/T452-1997
68 水泥取样方法 GB12573-90
69 水泥密度测定方法 GB/T208-94
70 水泥细度检验方法(80µm筛筛析法) GB1345-91
71 水泥比表面积测定方法(勃氏法) GB8074-87
72 水泥水化热测定方法(溶解热法) GB/T12959-91
73 水泥水化热试验方法(直接法) GB2022-80
74 水泥标准稠度用水量、凝结时间、安定性检验方法 GB1346-2001
75 水泥压蒸安定性试验方法 GB/T750-92
76 水泥胶砂流动度测定方法 GB/T2419-1999
77 水泥胶砂干缩试验方法 JC/T603-1995
78 水泥胶砂强度检验方法 (ISO法)(替代GB177-85) 等同ISO 697:1989 GB/T17671-1999
79 水泥强度快速检验方法(建设部标准) ZBQ 11004-86
80 水泥组分的定量测定 GB/T12960-1996
81 用于水泥中的火山灰质混合材料 GB/T2847-1996
82 水泥化学分析方法 GB/T176-1996
83 复合硅酸盐水泥 GB12958-1999
84 矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥 GB1344-1999
85 硅酸盐水泥、普通硅酸盐水泥 GB175-1999
86 用于水泥和混凝土中的粉煤灰 GB1596-91
87 粉煤灰混凝土应用技术规范 GBJ/T146-90
88 粉煤灰在混凝土和砂浆中应用技术规程(建设部标准) JGJ28-86
89 普通混凝土用砂质量标准及检验方法 JGJ52-92
90 普通混凝土用碎石或卵石质量标准及检验方法 JGJ53-92
91 砂、石碱活性快速试验方法(中国工程建设标准化协会标准) CECS 48:93
92 混凝土外加剂的分类、命名与定义 GB8075-87
93 混凝土外加剂 GB8076-1997
94 混凝土外加剂匀质性试验方法 GB8077-2000
95 混凝土外加剂应用技术规范 GBJ119-88
96 混凝土泵送剂 JC473-2001
97 混凝土膨胀剂 JC476-2001
98 混凝土拌合用水标准 JGJ63-89
99 预拌混凝土 GB/T14902-94
100 混凝土质量控制标准 GB50164-92
101 混凝土及预制混凝土构件质量控制规程 CECS40:92
102 混凝土强度检验评定标准 GBJ107-87
103 玻璃纤维增强水泥性能试验方法 GB/T15231-94
104 钢纤维混凝土 JC/T3064-1999
105 钢纤维混凝土试验方法 CECS13:89
106 回弹法检测混凝土抗压强度技术规程 JGJ/T23-2001
107 拔出法检验评定混凝土抗压强度技术规程(冶金工业部标准) YBJ229-91
108 超声回弹综合法检测混凝土强度技术规程 CECS02:88
109 钻芯法检测混凝土强度技术规程 CECS03:88
110 超声法检测混凝土缺陷技术规程 CECS21:2000
111 后装拔出法检测混凝土强度技术规程 CECS69:94
112 早期推定混凝土强度试验方法 JGJ15-83
113 混凝土结构试验方法标准 GB50152-92
114 混凝土结构工程施工质量验收规范 GB50204-2002
115 混凝土结构加固技术规范 CECS25:90
116 混凝土及预制混凝土构件质量控制规程 CECS40:92
117 特细砂混凝土配制及应用规程 BJG19-65
118 超声回弹综合法检测混凝土强度技术规程 CECS02:88
119 钻芯法检测混凝土强度技术规程 CECS03:88
120 钢纤维混凝土试验方法 CECS13:89
121 超声法检测混凝土缺陷技术规程 CECS21:2000
122 混凝土结构加固技术规范 CECS25:90
123 钢纤维混凝土结构设计与施工规程 CECS38:92
124 混凝土及预制混凝土构件质量控制规程 CECS40:92
125 砂、石碱活性快速试验方法(中国工程建设标准化协会标准) CECS48:93
126 混凝土碱含量限值标准 CECS53:93
127 后装拔出法检测混凝土强度技术规程 CECS69:94
128 混凝土搅拌站(楼)技术条件 GB/T10172-88
129 水泥水化热测定方法(溶解热法) GB/T12959-91
130 水泥组分的定量测定 GB/T12960-1996
131 水泥细度检验方法(80μm筛筛分析法) GB/T1345-1991
132 水泥标准稠度用水量、凝结时间、安定性检验方法 GB/T1346-2001
133 预拌混凝土 GB/T14902-2003
134 检验和校准实验室能力的通用要求 GB/T15481-2000
135 利用实验室间比对的能力验证 第1部分:能力验证计划的建立和运作 GB/T154831-1999
136 利用实验室间比对的能力验证 第2部分:实验室认可机构对能力验证计划的选择和使用 GB/T154832-1999
137 水泥化学分析方法 GB/T176-1996
138 水泥胶砂强度检验方法(ISO法) GB/T17671-1999
139 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T18046-2000
140 高强高性能混凝土用矿物外加剂 GB/T18736-2002
141 水泥密度测定方法 GB/T208-1994
142 水泥胶砂流动度测定方法 GB/T2419-1994
143 水泥的命名、定义和术语 GB/T4131-1997
144 普通混凝土拌合物性能试验方法标准 GB/T50080-2002
145 普通混凝土力学性能试验方法标准 GB/T50081-2002
146 水泥压蒸安定性试验方法 GB/T750-92
147 混凝土外加剂的分类、命名与定义 GB/T8075-1987
148 混凝土外加剂匀质性试验方法 GB/T8077-2000
149 混凝土搅拌机 GB/T9142-2000
150 水泥取样方法 GB12573-1990
151 复合硅酸盐水泥 GB12958-1999
152 矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥 GB1344-1999
153 水泥标准稠度用水量、凝结时间、安定性检验方法 GB1346-2001
154 用于水泥和混凝土中的粉煤灰 GB1596-91
155 硅酸盐水泥、普通硅酸盐水泥 GB175-1999
156 水泥水化热试验方法(直接法) GB2022-80
157 混凝土外加剂应用技术规范 GB50119-2003
158 混凝土结构试验方法标准 GB50152-92
159 混凝土质量控制标准 GB50164-92
160 混凝土结构工程施工质量验收规范 GB50204-2002
161 水泥比表面积测定方法(勃氏法) GB8074-87
162 混凝土外加剂 GB8076-1997
163 混凝土强度检验评定标准 GBJ107-1987
164 粉煤灰混凝土应用技术规范 GBJ146-90
165 普通混凝土长期性能和耐久性能试验方法 GBJ82-1985
166 通用水泥质量等级 JC/T452-2002
167 水泥胶砂干缩试验方法 JC/T603-1995
168 混凝土泵送剂 JC473-2001
169 混凝土膨胀剂 JC476-2001
170 钢纤维混凝土 JG/T3064-1999
171 混凝土搅拌运输车 JG/T5094-1997
172 混凝土泵送施工技术规程 JGJ/T10-95
173 回弹法检测混凝土抗压强度技术规程 JGJ/T23-2001
174 早期推定混凝土强度试验方法 JGJ15-83
175 粉煤灰在混凝土和砂浆中应用技术规程 JGJ28-86
176 高层建筑混凝土结构技术规程 JGJ3-2002
177 普通混凝土用砂质量标准及检验方法 JGJ52-1992
178 普通混凝土用碎石或卵石质量标准及检验方法 JGJ53-1992
179 普通混凝土配合比设计规程 JGJ55-2000
180 混凝土减水剂质量标准和试验方法 JGJ56-1984
181 混凝土拌合用水标准 JGJ63-89
182 混凝土输送管型式与尺寸 JJ83-91
183 拔出法检验评定混凝土抗压强度技术规程(冶金工业部标准) YBJ229-91
184 水泥强度快速检验方法(建设部标准) ZBQ11004-86
185 浙江省矿物外加剂应用技术规程
这是混凝土搅拌站一些常用的国家标准,所有工作基本都能在以上找到相应的国家标准,由于没有时间进行整理,可能里面存在这重复的标准或者有些标准已经有新的标准代替,例如:
177 普通混凝土用砂质量标准及检验方法 JGJ52-1992
178 普通混凝土用碎石或卵石质量标准及检验方法 JGJ53-1992
已经被普通混凝土用砂石质量标准级检测方法JGJ52-2006代替,还有很多,自己上网找找就知道了!这些标准到一些网站上都有PDF格式的下载
现用标准有:
I
水泥:
•
通用硅酸盐水泥GB175—2007
•
水泥胶砂强度检验方法GB/T17671—1999
•
水泥细度检验方法GB/T1345—2005
•
水泥密度测定方法GB/T2419—2005
•
水泥标准稠度用水量、凝结时间、安定性检验方法GB/T1346—2001
•
水泥密度测定方法GB/T208—94
•
如果资金允许想更进一步的做水泥试验可以买:
•
水泥强度快速检验方法JC/T738—2004
•
水泥化学分析方法GB/T176—1996
II
砂石:
•
普通混凝土用砂、石质量及检验方法标准JGJ52—2006
III
掺和料:
•
用于水泥和混凝土中的粉煤灰GB/T1596—2005
•
用于水泥和混凝土中的粒化高炉矿渣粉GB/T18046—2000
•
高强高性能混凝土用矿物外加剂GB/T18736—2002
IV
外加剂:
•
混凝土外加剂定义、分类、命名与术语GB/T8075—2005
•
混凝土外加剂GB/T8076—1997
•
混凝土泵送剂JC473—2001
•
砂浆、混凝土防水剂JC474—1999
•
混凝土防冻剂JC475—2004
•
混凝土膨胀剂JC476—2001
•
混凝土外加剂匀质性试验方法GB/T8077—2000
•
混凝土外加剂中释放氨的限量GB18588—2001
•
混凝土外加剂应用技术规范GB50119—2003
V
混凝土相关标准:
•
混凝土结结工程施工及验收规程GB50204—2002
•
普通混凝土配合比设计规程JGJ55—2000
•
混凝土质量控制标准GB50164—92
•
混凝土强度检验评定标准GBJ107—87(现在正在修定新标准)
•
普通混凝土拌合物性能试验方法标准GB/T50080—2002
•
普通混凝土力学性能试验方法标准GB/T50081—2002
•
普通混凝土长期性能和耐久性能试验方法GBJ82—85
•
回弹法检测混凝土抗压强度技术规程JGJ/T23—2001
•
预拌混凝土GB/T14902—2003
•
混凝土泵送施工技术规程
JGJ/T10-95
•
高强混凝土结构技术规程
CECS104:99
•
建筑工程冬期施工规程
JGJ104-97
•
自密实混凝土应用技术规程CECS
203:2006
现在有些个标准已经出了新版的号不不变的!自己找一找吧!
为确定产品是否合格,必须进行检验。检验方式可分为逐个检验和抽样检验两种。混凝土拌合物是一种塑性材料,其性能的检验只能采用抽检的方式进行。
混凝土的匀质性很差,体系复杂,具有微结构的不确知性和性能的不确定性。因此,欲使抽样更接近于真值,必须增加抽样数量,抽样数量越多,代表性越好。对于某一结构混凝土来讲,为使抽样具有一定的代表性,强度的抽样数量一般不少于10组。过少数量则很难代表混凝土的整体强度,其错判概率相当大。但在实际操作中又不可能抽取大量试样,这就势必影响检验结果的代表性,造成过失误差也就在所难免,特别是同一检验批只成型1 组混凝土试件时, 更容易造成“假”不合格问题的发生。
另须注意的是,在抽样检验制作试件时,应测量试模是否符合《混凝土试模》JG3019 标准中技术要求的规定。有些小制造厂生产的试模存在质量问题,根本达不到标准技术指标要求,检测人员在试验前也没有测量试件尺寸的习惯。因此,当发生试件不合格时,无法提供可追溯性的分析依据。
上口直径175mm,下口直径185mm,高150mm
土建工程试验送样是体现展示土建工程质量优劣的一个主要途径,砼试块的送样是土建工程试验的一个重要组成部分,同时砼试块送样又存在时效性强,试验报告出来后无法更改,不能补送的特点。这样,一旦送样出现纰漏,就会对工程造成相当大的损失。《混凝土结构工程施工质量验收规范》(以下简称《规范》)和《混凝土强度检验评定标准》对混凝土试块送样过程中出现的问题进行若干阐述。
实体检测就是用仪器在已经施工完成的结构上进行砼回弹试验啦或者钢筋保护层检测啦一类的检验,以作为除砼试块之外的一种对结构质量的检验,在结构主体检测中是必检项目。主体验收之前必须要主体检测合格。混凝土一般有强度检测和钢筋保护层检测。其方法包括回弹法、超声回弹综合法、取芯法(损伤法)。楼板厚度检测方法是超声波对测法。
混凝土结构实体检验有哪些规定
混凝士结构实体检验的项目有两种:混凝土强度和梁板类构件主筋的钢筋保护层厚度。
混凝土强度实体检验可采用“结构实体检验用同条件试件”的方法进行。依据《混凝土结构工程施工质量验收规范》[GB 50204-2002(2011年版)]“101结构实体检验”及附录D“结构实体检验用同条件试件”中的规定,归纳如下:
1、第1011条“结构实体检验用同条件试件”的制作,应由监理单位见证,由施工单位组织实施,送至有见证资质的检测机构试验。
2、附录D01条试件留置数量:按照强度等级留置。对于C20以上强度等级的混凝土,每个强度等级应至少留置3组试件,规范建议,当有条件时每个强度等级宜留置10组以上。
3、附录D02条检验时间:同条件养护试件应在达到等效养护龄期时进行强度试验。
4、附录D03条第2款 结构实体检验用同条件试件应与结构同条件养护。养护龄期达到600℃·d时进行试验。试件试压结果应乘以换算系数110按《混凝土强度检验评定标准》(GB/T 50107-2011)判定。
5、第1016条异常情况下的验收:当同条件养护试件强度被判为不合格时,应委托具有相应资质等级的检测机构按国家有关标准的规定进行检测,再根据检测结果进行验收。
混凝土是建筑工程的最主要材料,决定着工程的质量,强度又是决定混凝土其它性能的基础,是混凝土最主要的的性能。检测混凝土强度的方法很多,有试块法、回弹法、超声法、钻芯法、拔出法,各种方法各有特点。
1、试块法,是施工时把拌制好的混凝土倒入规定的立方体试模内,经震动或插捣成型,按规定的温度及湿度进行养护28天后,进行试压强度试验,以150mm立方体试件为标准件,100mm和200mm立方体试件按规定的尺寸折算系数进行换算。混凝土试块在一定程度上反映了混凝土实体的强度,也是混凝土质量评定的主要依据,是一种最常见最基本的检测方法,也是最直观最经济的方法。
优点:通过试验可以直接了解混凝土本身的强度,在施工中,在见证条件下制作的同条件养护试块,等效养护试压结果,经换算可作为结构实体强度等级的复验依据,这一方法在大量的结构质量验收检验中占据了主导地位。
缺点:试块法能直接反映出混凝土本身的强度,但对于施工后的质量无法真实反映,有时试块是合格了,但混凝土实体质量跟施工单位的水平、方法及工作态度有很大关系,质量如何很难确定,导致存在一定的质量安全隐患,另一方面,如果试块制作马虎,养护不规范,容易导致试块质量不合格,而实际上混凝土质量强度是满足要求的,从而导致不必要的麻烦。所以工地上混凝土的取样如果不是按规定的数量随机抽取,而是根据混凝土搅拌质量的好坏来取,质量好的时候才取样,所取的样品就没有代表性,不能真实反映混凝土的质量情况。
2、钻芯法,是在有代表性的混凝土结构上用金钢石钻头钻取芯样,经过加工,两端锯切、磨平或补平后,制作成圆柱体进行抗压强度测定。构件龄期不少于14天、强度不低于10Mpa的混凝土都可采用钻芯法检测其强度,但由于取芯后会对结构造成一定的损伤,特别是抽到结构的钢筋损伤会更大,因此,对于重要部位的结构构件,应征得设计方的复核同意,方可进行抽芯。取芯的部位、数量也要有具体的规定。
优点:钻芯法是一种直接可靠,直接反映构件混凝土实际情况的局部破损检测方法,对于无损检测法很难准确测定的各种强度等级的混凝土强度,钻芯法可以比较准确地测定其强度。此外,从抽出的芯样部分可以直接观察到该构件内部混凝土实际情况,如骨料分布、蜂窝气孔、裂缝等。
缺点:劳动强度大,取样工艺要求严格,芯样加工要求高,两端面平整度及跟柱边垂直度要求很高,如果不平整会造成强度偏低,另外对结构构件会造成局部损伤,检测费用较高,构件钢筋太密也无法抽取。
3、回弹法,通过回弹仪测定混凝土表面硬度,再结合混凝土的碳化深度继而推断其抗压强度。回弹仪测定的回弹值是混凝土表面的硬度,材料的硬度又跟材料的强度有关,从而建立回弹值跟强度的专用测强曲线来推断强度值。采用回弹法进行检时,其检测面应为原状混凝土面,并应平整、清洁,不应有疏松层、浮浆、麻面,必要时用砂轮清除疏松层和杂物,且不应有残留的粉末或碎屑
优点:使用简单、灵活,测试速度快和检验费用低,检测人员到现场随机
抽取检测,及时掌握混凝土的真实强度及浇筑的整体水平。
缺点:其精度相对较差,需借助一定的测强曲线,当混凝土表面与内部质量有明显差异,如遭受化学腐蚀或火灾,硬化期间遭受冻伤等,则不能用此方法。
4、超声检测法
超声检测法由于超声检测能对混凝土内部空洞、不密实区的位置和范围、裂缝深度、表面损伤层厚度、不同时间浇筑的混凝土结合的质量和混凝土匀质性做出比较准确的判定,而这正是其他检测方法所无法做到的,所以,该法在工程检测中得到了广泛的应用。当采用超声法测强时,由于影响声速的因素很多,如水泥品种、水泥用量、含砂率,粗骨料品种和最大粒径、含水率、龄期等,当所用材料、含水率和龄期不同时,传播速度与混凝土的强度关系将有很大不同,因此用超声法很难准确地测定混凝土的强度,目前通常是将超声法和回弹法综合在一起来测定混凝土的强度,即所谓超声回弹综合法(单一的超声法主要还是检测混凝土的匀质性)。
按照《超声回弹综合法检测混凝土强度技术规程》(超声回弹法)测得的混凝土强度比混凝土的实际强度小,但其规律比较明显,且离散性较小,说明这种方法还是比较可靠的,但需要根据各地区的混凝土所用材料及环境条件建立相应的测强曲线。
5、后装拔出法
拔出法已被很多国家采用,并已有相应的试验标准。后装拔出法检测混凝土强度,系指在已硬化的混凝土表面钻孔、磨槽、嵌入锚固件并安装拔出仪进行拔出试验,测定极限拔出力,根据预先建立的拔出力与混凝土强度之间的相关关系检测混凝土强度。被检测混凝土的强度不应低于100MPa。《后装拔出法检测混凝土强度技术规程》(CECS69-1994)中规定当对结构或构件的混凝土强度有怀疑时,或旧结构混凝土强度需要检测时,可按后装拔出法进行检测,检测结果可作为评价混凝土质量的一个主要依据。具有如下特点:(1)拔出法是工程中检测结构混凝土强度的有效方法,优点明显。(2)中、高强度混凝土的拔出法检测中,选择环形支承还是三点支承,还应根据混凝土组成和内部结构特点进行研究,探索合理的方法。(3)由于各因素的差异,使用拔出法检测混凝土强度应建立地方测强曲线,从而进一步提高检测结果的准确性。
在检测混凝土强度时,采用何种方法,应根据被测混凝土结构的具体情况及检测条件综合确定。混凝土结构工程施工质量验收规范(GB50204-2002)规定试件强度评定不合格时,可采用非破损或局部破损的检测方法,对构件的混凝土强度进行推定。当需要准确判定结构混凝土强度等级,且有条件时,可优先考虑采用钻芯法或采用钻芯法修正,钻芯法是目前准确性最高的方法;当混凝土质量比较均匀时,可采用回弹法和超声回弹法,如果用钻芯法进行校核则可以提高精确度;当混凝土强度比较低时,不宜用抗拔法,因为此时测得的混凝土强度偏高。
结论:本文比较了几种混凝土强度检测方法及其特点,得出了各种方法的不同适用范围。混凝土强度检测的目的是:采集必要数据,通过数据的计算与修正,推定混凝土强度,最后对被检测混凝土构件做出正确的判断。因此,检测数据的可靠性是选择检测方法时首先应考虑的;其次在选择检测方法时既要考虑检测构件的适用性,还要考虑检测费用、检测速度以及对结构的破坏程度等。在实际应用中,应根据具体工程情况和各种检测方法的特点来选择合理的检测方案。