四冲程柴油发动机工作原理(文字解说)
四冲程柴油机的工作循环还包括进气、压缩、做功和排气四个过程。在每个活塞冲程中,进气门和排气门的开闭以及曲柄连杆机构的运动与汽油机完全相同。只是因为柴油和汽油的性能不同,所以柴油和汽油发动机在混合气形成和点火的方法上有着根本的区别。
1.进气冲程
在柴油机的进气冲程中,只有纯空气被吸入气缸。
2.压缩冲程
因为柴油机的压缩比大,所以压缩冲程末期的气体压力高。
3.工作旅程
在压缩冲程结束时,喷油泵将柴油泵入喷油器,并通过喷油器将其喷入燃烧室。因为喷射压力很高,而喷射孔的直径很小,所以喷射的柴油是细雾形式。细小的油滴在热空气中迅速蒸发,借助空气的运动,迅速与空气混合,形成可燃混合物。由于气缸内的温度远高于柴油的自燃点,柴油立即点燃燃烧。燃烧气体的压力和温度迅速上升,其体积迅速膨胀。在气体压力的作用下,活塞推动连杆,连杆推动曲轴转动做功。
4.排气跳闸
当排气冲程开始时,排气门打开,进气门仍然关闭,燃烧后的废气排出气缸。
汽车机油泵的工作原理是什么
机油泵的作用是提高机油压力,强制地将机油压送到运动部件的摩擦面,使机油在润滑系统中得以循环,以保证发动机的良好润滑。富康轿车发动机的机油泵是采用带限压阀的齿轮式机油泵,它是由曲轴通过链条带动工作。其工作原理为:
⑴在油泵壳体内装有一个动齿轮和一个从动齿轮,齿轮与壳体内壁之间的间隙很小,壳体上有进油口。发动机工作时。齿轮按图中所示箭头方向旋转,进油腔1的容积由于轮齿向脱离啮合方向运动而增大,腔内产生一定的真空度,机油便从进油口被吸入井充满进油腔。齿轮旋转时把齿间所存的机油带到油腔2内,,由于出油腔一侧轮齿进入啮合,出油腔容积减小,压力升高,机油便经过出油口被送到发动机油道中。机油泵由曲轴前端齿轮通过链条带动,在发动机工作时,机油泵不断工作,从而保证油在润滑油路中进行循环。
(2)当齿轮进入啮合时,啮合齿间的机油,由于容积变小产生很大的压力,机油受到压缩。但油液
的可压缩性很小,从而油压急剧升高,油泵因此受附加负载以致损坏。另外,当密闭容积增加时,将形成真空引起油泵的振动及噪音。为此在泵盖上铣出一条卸压槽3,使轮齿啮合时,齿间挤出的机油可以通过卸压槽流向出油腔。
(3)润滑系中油压过高,会增加发动机功率损失。为此在机油泵总成内设置限压阀,当油压超出正常值时,作用在柱塞上的机油总压力将超过限压阀弹簧的预紧力,顶开柱塞让一部分油回流到机油泵的进油口,使油路中保持一定的压力和流量,满足润滑要求。
柴油机水泵是气流只能一个方向流动而不能反向流动的方向控制阀。其工作原理与液压消防泵一样。压缩空气从口进入,克服弹簧力和摩擦力使消防泵阀口开启,压缩空气从P流至A;当P无压缩空气时,在弹簧力和A(腔)余气力作用下,柴油机水泵阀口处于关闭状态,使从A至P气流不通。柴油机水泵应用于不允许气流反向流动的场合,如空压机向气罐充气时,在空压机与气罐之间设置一柴油机水 泵,当空压机停止工作时,可防止气罐中的压缩空气回流到空压机。
1、进气行程
进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa=(0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。
2、压缩行程
由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3000~5000kPa,压缩终点的温度为750~1000K,大大超过柴油的自燃温度(约520K)。
3、做功行程
当压缩行程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5000~9000kPa,最高温度达1800~2000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。
4、排气行程
柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个行程中只有一个行程是做功的,其他三个行程是消耗动力为做功做准备的行程。
为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。
扩展资料:
基本结构:
发动机是由曲柄连杆机构和配气机构两大机构,以及冷却、润滑、点火、燃料供给、启动系统等五大系统组成。主要部件有气缸体、气缸盖、活塞、活塞销、连杆、曲轴、飞轮等。往复活塞式内燃机的工作腔称作汽缸,汽缸内表面为圆柱形。
在汽缸内作往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端则与曲轴相连,曲轴由气缸体上的轴承支承,可在轴承内转动,构成曲柄连杆机构。活塞在汽缸内作往复运动时,连杆推动曲轴旋转。
反之,曲轴转动时,连杆轴颈在曲轴箱内作圆周运动,并通过连杆带动活塞在气缸内上下移动。曲轴每转一周,活塞上、下各运行一次,汽缸的容积在不断的由小变大,再由大变小,如此循环不已。汽缸的顶端用汽缸盖封闭。
汽缸盖上装有进气门和排气门。通过进、排气门的开闭实现向汽缸内充气和向汽缸外排气。进、排气门的开闭由凸轮轴驱动。凸轮轴由曲轴通过齿形带或齿轮驱动。
参考资料来源:百度百科-四冲程柴油机
四冲程汽油发动机的运转是按进气行程、压缩行程、作功行程和排气行程的顺序不断循环反复的。由于曲轴的旋转,活塞从上止点向下止点运动,这时排气门关闭,进气门打开。进气过程开始时,活塞位于上止点,气缸内残存有上一循环未排净的废气,因此,气缸内的压力稍高于大气压力。随着活塞下移,气缸内容积增大,压力减小,当压力低于大气压时,在气缸内产生真空吸力,空气经空气滤清器并与化油器供给的汽油混合成可燃混合气,通过进气门被吸入气缸,直至活塞向下运动到下止点。在进气过程中,受空气滤清器、化油器、进气管道、进气门等阻力影响,进气终了时,气缸内气体压力略低于大气压,约为0.075~0.09MPa,同时受到残余废气和高温机件加热的影响,温度达到370~400K。实际汽油发动机的进气门是在活塞到达上止点之前打开,并且延迟到下止点之后关闭,以便吸入更多的可燃混合气。曲轴继续旋转,活塞从下止点向上止点运动,这时进气门和排气门都关闭,气缸内成为封闭容积,可燃混合气受到压缩,压力和温度不断升高,当活塞到达上止点时压缩行程结束。此时气体的压力和温度主要随压缩比的大小而定,可燃混合气压力可达0.6~1.2MPa,温度可达600~700K。 压缩比越大,压缩终了时气缸内的压力和温度越高,则燃烧速度越快,发动机功率也越大。但压缩比太高,容易引起爆燃。所谓爆燃就是由于气体压力和温度过高,可燃混合气在没有点燃的情况下自行燃烧,且火焰以高于正常燃烧数倍的速度向外传播,造成尖锐的敲缸声。会使发动机过热,功率下降,汽油消耗量增加以及机件损坏。轻微爆燃是允许的,但强烈爆燃对发动机是很有害的,汽油发动机的压缩比一般为ε=6~10。作功行程包括燃烧过程和膨胀过程,在这一行程中,进气门和排气门仍然保持关闭。当活塞位于压缩行程接近上止点(即点火提前角)位置时,火花塞产生电火花点燃可燃混合气,可燃混合气燃烧后放出大量的热使气缸内气体温度和压力急剧升高,最高压力可达3~5MPa,最高温度可达2200~2800K,高温高压气体膨胀,推动活塞从上止点向下止点运动,通过连杆使曲轴旋转并输出机械功,除了用于维持发动机本身继续运转外,其余用于对外作功。随着活塞向下运动,气缸内容积增加,气体压力和温度降低,当活塞运动到下止点时,作功行程结束,气体压力降低到0.3~0.5MPa,气体温度降低到1300~1600K。可燃混合气在气缸内燃烧后生成的废气必须从气缸中排出去以便进行下一个进气行程。当作功接近终了时,排气门开启,进气门仍然关闭,靠废气的压力先进行自由排气,活塞到达下止点再向上止点运动时,继续把废气强制排出到大气中去,活塞越过上止点后,排气门关闭,排气行程结束。实际汽油发动机的排气行程也是排气门提前打开,延迟关闭,以便排出更多的废气。由于燃烧室容积的存在,不可能将废气全部排出气缸。受排气阻力的影响,排气终止时,气体压力仍高于大气压力,约为0.105~0.115MPa,温度约为900~1200K。
曲轴继续旋转,活塞从上止点向下止点运动,又开始了下一个新的循环过程。可见四冲程汽油发动机经过进气、压缩、作功、排气四个冲程完成一个工作循环,这期间活塞在上、下止点往复运动了四个冲程,相应地曲轴旋转了两圈。
四冲程柴油机的工作原理是:
柴油机的工作是由进气、压缩、燃烧膨胀和排气这四个过程来完成的,这四个过程构成了一个工作循环。活塞走四个过程才能完成一个工作循环的柴油机称为四冲程柴油机。
进气冲程:
进气门开启、排气门关闭,活塞在曲轴、连杆的带动下,从上止点向下止点运动,把新鲜空气吸进气缸,活塞到达下止点,进气冲程结束。
压缩冲程:
进排气门关闭,活塞在曲轴、连杆的带动下,从下止点向上止点运动,吸进气缸的空气被压缩成高温、高压气体,活塞到达上止点时,压缩冲程结束。
做功冲程:
压缩冲程结束后,(进排气门仍处于关闭状态)喷油器将燃油喷进气缸,在高温、高压气体的作用下,燃油被压燃,气缸内产生巨大的能量,推动活塞从上止点向下止点运动,曲轴飞轮组储存和输出能量,活塞到达下止点时,做功冲程结束。
排气冲程:
进气门关闭,排气门开启,活塞在曲轴、连杆的带动下,从下止点向上止点运动,将气缸内燃烧后的废气排出,活塞到达上止点时,排气冲程结束。在进气、压缩、做功、排气四个冲程中,只有做功冲程产生能量,其他三个冲程都是靠曲轴、飞轮的惯性完成的。
拓展资料:
发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。
发动机为汽车提供动力。发动机还广泛应用于交通运输机械、农业机械、工程机械和发电机组等各个方面。发动机种类繁多,其中四冲程发动机是最常见的一种分类。
四冲程发动机属于往复活塞式内燃机,根据所用燃料种类的不同,分为汽油机、柴油机和气体燃料发动机三类。以汽油或柴油为燃料的活塞式内燃机分别称作汽油机或柴油机。使用天然气、液化石油气和其他气体燃料的活塞式内燃机称作气体燃料发动机。汽油和柴油都是石油制品,是汽车发动机的传统燃料。非石油燃料称作代用燃料。燃用代用燃料的发动机称作代用燃料发动机,如乙醇发动机、氢气发动机、甲醇发动机等。
发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。
往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。
1892年德国工程师狄塞尔(RudolfDiesel)发明了压燃式发动机(即柴油机),实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当时其他发动机又提高了1倍。1956年,德国人汪克尔(F.ankel)发明了转子式发动机,使发动机转速有较大幅度的提高。1964年,德国NSU公司首次将转子式发动机安装在轿车上。
1926年,瑞士人布希(A.Buchi)提出了废气涡轮增压理论,利用发动机排出的废气能量来驱动压气机,给发动机增压。50年代后,废气涡轮增压技术开始在车用内燃机上逐渐得到应用,使发动机性能有很大提高,成为内燃机发展史上的第三次重大突破。
1967年德国博世(Bosch)公司首次推出由电子计算机控制的汽油喷射系统(ElectronicFuelInjection,EFI),开创了电控技术在汽车发动机上应用的历史。经过30年的发展,以电子计算机为核心的发动机管理系统(EngineManagementSystem,EMS)已逐渐成为汽车、特别是轿车发动机上的标准配置。由于电控技术的应用,发动机的污染物排放、噪声和燃油消耗大幅度地降低,改善了动力性能,成为内燃机发展史上第四次重大突破。
按发动机在一个工作循环期间活塞往复运动的行程数,分为四冲程和二冲程发动机。在一个工作循环中活塞往复四个行程的内燃机称作四冲程往复活塞式内燃机,而活塞往复两个行程完成一个工作循环的则称作二冲程往复活塞式内燃机。
参考资料:百度百科——四冲程柴油机
四冲程船用发动机优点:有进气门和排气门,拥有整套的配气机构和润滑系统,动力更足,性能更强。
缺点:价格高,维修困难。
二冲程船用发动机优点:二冲程发动机没有进、排气门,没有复杂的配气机构和润滑系统,冷却系统一般都采用风冷,所以在结构上比四冲程发动机更简单,重量比较轻,制造成本低廉,故障率也更低,维修也比较方便。
缺点:与四冲程发动机相比较而言,二冲程发动机的运动部件润滑效果较差,零部件工作环境较恶劣,曲轴、活塞等零部件耗损得更快。所以二冲程发动机比四冲程发动机寿命短,一般只有四冲程发动机寿命的1/3-1/2。
二者区别如下:
1、机体组结构不同
四冲程船用发动机的气缸盖结构是非常复杂的,上面有进排气门、冷却水道、机油通道等。
二冲程船用发动机的气缸盖结构是比较简单的,一般只是一个简单的盖子而已,即使有气门,也只有一个排气门。
2、配气结构不同
四冲程船用发动机的配气机构是极为复杂的,主要由凸轮轴、气门、气门挺杆等组成。
二冲程船用发动机的配气机构就简单多了,严格来说,它是没有配气机构的。它的进排气是通过曲轴运转、活塞上下运动,打开和关闭位于气缸壁上的进气口和排气口来实现的。
3、润滑系统不同
四冲程船用发动机有一套完整的润滑系统,在油底壳中存储发动机机油,利用机油泵将机油打向需要润滑的部件,有压力润滑和飞溅润滑两种型式。并且四冲程发动机会尽可能的防止机油窜入燃烧室参与燃烧。
二冲程船用发动机没有油底壳,曲轴箱用于发动机进气,活塞、气缸内壁和曲轴的润滑是依靠吸入气缸的混合气中含有一小部分的机油来实现的。这种润滑方式,机油必然要进入燃烧室参与燃烧,所以发动机会冒蓝烟,排气蓝烟的程度取决于混合气中供合的机油比例。
参考资料:百度百科-四冲程
参考资料:百度百科-二冲程